Showing posts with label eight outbreaks. Show all posts
Showing posts with label eight outbreaks. Show all posts

Sunday, March 28, 2010

Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks

Subject: Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks

Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks

Since 2002, an active surveillance program for transmissible spongiform encephalopathy in small ruminants in European Union countries allowed identification of a considerable number of atypical cases in small ruminant with similarities to the previously identified atypical scrapie cases termed Nor98.

Results: Here we report molecular and neuropathological features of eight atypical/Nor98 scrapie cases detected between 2002 and 2009. Significant features of the affected sheep included: their relatively high ages (mean age 7.9 years, range between 4.3 and 12.8), their breed (all Latxa) and their PRNP genotypes (AFRQ/ALRQ, ALRR/ALRQ, AFRQ/AFRQ, AFRQ/AHQ, ALRQ/ALRH, ALRQ/ALRQ).

All the sheep were confirmed as atypical scrapie by immunohistochemistry and immunoblotting. Two cases presented more PrP immunolabelling in cerebral cortex than in cerebellum.

Conclusions: This work indicates that atypical scrapie constitutes the most common small ruminant transmissible spongiform encephalopathy form in Latxa sheep in the Spanish Basque Country.

Moreover, a new genotype (ALRQ/ALRH) was found associated to atypical scrapie.

Author: Ana Rodriguez-MartinezJoseba GarridoSonia MazaLeyre BenedictoMarivi GeijoNieves GomezEsmeralda MinguijonSylvie BenestadRamon Juste Credits/Source: BMC Veterinary Research 2010, 6:17


http://7thspace.com/headlines/339700/atypicalnor98_scrapie_in_the_basque_country_a_case_report_of_eight_outbreaks.html




another outbreak of spontaneous atypical scrapie ???



FURTHER INTO THIS STUDY ;



Case presentation

Between 2002 and 2008 the mean number of sheep analysed per year in the Basque Country was 764 and until September 2009, the total number of animals screened added up to 5620. Of these, eight Latxa ewes with molecular and pathological features of AS/Nor98 were found. The cases were detected widely distributed within this region and amounted to a significantly (p=0.0196) higher prevalence (0.15 %) than

6

that of classical scrapie (0.02 %) (Table 1). The first two cases were fallen stock and appeared in 2004, the third one was a slaughtered ewe tested in 2005 that was confirmed by Western blotting as Nor98 at the Norwegian National Veterinary Institute. The three following cases were detected in 2008, the first two cases at the beginning of the year and the third at the end of the year. The two last cases were detected at the beginning of 2009 and had been slaughtered for human consumption. Clinical symptoms were reported in only one of the cases (M31 (2008)). It drew the attention of the veterinary inspector at the slaughterhouse because it showed slight neurological signs such as ataxia, and poor condition. There were no further veterinary inspection reports of clinical signs for the remaining slaughtered animals or any of the fallen stock. In this context, it needs to be emphasized that due to frequent lack of clinical records as a consequence of the inefficiency of passive surveillance, there is no adequate clinical information on these scrapie cases in general. The mean age of all the eight cases was 7.9 years (range between 4.3 and 12.8).

SNIP...

We described eight atypical scrapie cases detected between 2002 and 2009 from the Basque Country. All AS/Nor98 cases were found in Latxa sheep which breed represents 85% of the Basque Country sheep population [54,55,57]. The occurrence of these cases seemed to be random and, in agreement with other AS surveillance studies [22], there was no apparent temporal trend,. Geographically, the distribution of atypical scrapie cases was in accordance with that described in other regions of the world. First, a single positive sheep per affected flock was detected, as observed in the majority of other AS cases [1,19,20]. Second, they presented a wide distribution in the Basque Country, with reports of cases in all three provinces. At this point it should be mentioned that the highest proportion was observed in Guipuzcoa (62.5%) but it may be due to the fact that it constituted the province with the highest rate of sheep slaughter

9

(over 90%) analysed in the Basque Country. Nevertheless, the sample size was still too small to draw any definite conclusion. Moreover, the occurrence of atypical scrapie cases pointed to an absence of time clustering, since there were long periods with no detection of cases and then, within a few months 2 or 3 affected animals were detected. However, it must be taken into consideration that, (i) not all sheep older than 18 months of age were analysed as a consequence of the random sampling procedure contrary to the exhaustive one legislated for cattle, (ii) the brain sampling may not have been optimal, e.g. only the medulla oblongata was collected or, particularly in the case of fallen stock, the brain samples were sometimes severely autolytic and liquefied, thus increasing the chances of sampling an area where PrPSc was absent, (iii) due to the young age of some animals, the stage of the disease, the small sampling site and the relatively low number of animals and short period of time involved, the possibility of longer and more tenuous temporal and spatial trends in PrPSc distribution could not be excluded. For these reasons, the number of AS and CS cases may be underrepresented and could suffer from a certain bias. One of the cases (M45) described here was confirmed to be Nor98. PrPSc deposition, distribution and molecular profile of the cases M72, M31, M15, M9-1 and M9-2 were identical to the features of this Nor98-confirmed case and to previous descriptions [1,38]. Moreover, the mean age observed was in accordance to other observations for atypical scrapie [36]. Among some of the features our cases had in common with M45, the following should be emphasised: i) the molecular protein profile showed a characteristic low molecular weight band under 14 kDa, ii) the cerebellum was the most affected region, iii) PrPSc was mainly detected in the neuropil predominantly as fine granular deposits, and iv) a faint to moderate PrPSc signal intensity was seen. The detection of more intense PrPSc deposits in cerebellum or

10

cerebral cortex rather than in the medulla oblongata may indicate that the prion is likely not to enter the brain through the medulla (DMNV) as described for classical scrapie [58], thus suggesting a rather sporadic aetiology, as observed in human sporadic TSE cases. Cases M15 and M27 however, presented some differences. Albeit PrPSc molecular pattern was similar to the Nor98 confirmed case, both animals showed more PrPSc deposits in the frontal lobe of cerebral cortex than in the cerebellum by immunohistochemistry (IHC) and also by immunoblot (WB) for case M27. By contrast, case M15 showed small differences between IHC and WB results since the signal in the pooled obex and cerebellum in WB was more intense than in the cerebellum and medulla oblongata in IHC. This could have been biased by the sampling for frozen tissues and by severe tissue autolysis and could be the explanation for a negative and extremely faint PrPSc signal in WB of case M7 in the cerebellum and obex, respectively. The fact that these cases showed more PrPSc accumulation in cerebral cortex than in cerebellum might be influenced by other still unknown environmental or genetics factors. Alternatively, this might happen more commonly than observed because of the limited number of AS/Nor98 cases where both the cerebellar and the cerebral cortices are available for analysis. When the sampling of brain is carried out with a spoon through the foramen magnum some cerebellum can also be collected along with the medulla oblongata and this can be targeted as the optimum sample for WB testing, particularly if the IHC results indicate a possible atypical scrapie case. Unfortunately, cerebrum is not routinely collected by this method so little is known about its PrPSc status. The availability of this brain region for M7 would have been useful to clear up any doubt on its diagnosis and classification. This case was questionable because we did not obtain a clear pattern in the WB with the band lower than 14kDa size and because the detected signal in the cerebellum by means of IHC was extremely faint. The poor

11

condition of the sample and the scant material available did not allow us to obtain, after repetitions of the analyses, a clear evidence of being an AS/Nor98 case. The fact that it was confirmed for the National Reference Laboratory allowed arguing that it was a scrapie case. Besides, there were several features supporting it as an atypical scrapie case. First, for CS, we would have expected to obtain a more intense signal in the WB and a clear three bands pattern of PrPSc in the region of the obex [17]. Second, even not having an optimal signal in the WB that showed the lower band characteristic of atypical cases and having evidences according to which the case was positive by means of IHC and rapid test, the possibility of an atypical scrapie case should not be excluded. In this case, it could have happened that there was little amount of abnormal PrPSc so that after PK digestion the amount of resistant PrPSc was reduced considerably below the detection threshold of WB, as observed in the cerebellum of case M15. Third, the age of this sheep was higher than the mean age of CS cases described in Latxa breed [59] and in other breeds [60,61]. Finally, this was the only detected case in its herd, which was in agreement with the epidemiology of the AS/Nor98 [1,19,20].

The majority of PrP genotypes described herein were observed in other AS/Nor98 cases [36]. We found an over-representation of animals carrying AF141RQ and AL141RQ alleles, suggesting that these alleles may confer more susceptibility to atypical scrapie in Latxa breed sheep. We also described a novel genotype associated to AS that has not been previously described (AL141RQ/AL141RH).

Case reports from this study and other case reports from Spain (http://www.eeb.es/pags/espana.htm) and Portugal [35], indicate a high frequency of atypical cases compared to CS outbreaks in the Iberian Peninsula. It could be speculated that AS/Nor98 is the traditional form of scrapie in the Iberian part of the Basque country, whilst in the French part, the classical form has been predominant [59]. This

12

would point to some unidentified epidemiological features limiting the spread of classical scrapie in the Iberian Peninsula. However, since the analysis of all sheep can not be guaranteed, it is difficult to test this hypothesis. The analysis of all sheep would provide more information about the epidemiology and pathology of this disease. Moreover, it could contribute in assessing whether AS is present in the Basque Country with the same high frequencies as others human TSEs, such as sporadic Creutzfeldt- Jakob disease [60] and Fatal Familiar Insomnia compared to other Spanish autonomous communities (National Epidemiology Centre:





http://www.isciii.es/htdocs/centros/epidemiologia/epidemiologia_listado_ecj.jsp).



Conclusions

This work indicates that AS/Nor98 constitutes the most common small ruminant Transmissible Spongiform Encephalopathy form in the Latxa breed in the Spanish Basque Country, where it also affects a genotype (ALRQ/ALRH) not previously associated to this form of TSE.


SNIP....SEE FULL TEXT ;


Atypical/Nor98 scrapie in the Basque Country: a case report of eight outbreaks BMC Veterinary Research 2010, 6:17 doi:10.1186/1746-6148-6-17




http://www.biomedcentral.com/content/pdf/1746-6148-6-17.pdf




TSS

Wednesday, March 3, 2010

NOR-98 ATYPICAL SCRAPIE USA 4 CASES DETECTED JANUARY 2010

Greetings,

Unusual event if you consider the officials hypothisis that Nor-98 atypical scrapie is a spontaneous event. seems there was a great deal of spontaneous mutations for this time period ;-)...TSS


http://nor-98.blogspot.com/2010/03/nor-98-atypical-scrapie-usa-4-cases.html



Thursday, March 11, 2010

CANADA TYPICAL AND ATYPICAL SCRAPIE REPORT TO MARCH 2010


http://nor-98.blogspot.com/2010/03/canada-typical-and-atypical-scrapie.html



Monday, November 30, 2009

USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE


http://nor-98.blogspot.com/2009/11/usda-and-oie-collaborate-to-exclude.html



Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types

hmmm, this is getting interesting now...

Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits,

see also ;

All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.


http://cjdusa.blogspot.com/2009/09/co-existence-of-scrapie-prion-protein.html



see full text ;

Monday, December 14, 2009

Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease Are Encoded by Distinct Prion Types


http://nor-98.blogspot.com/2009/12/similarities-between-forms-of-sheep.html



P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.


http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf


PR-26

NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS

R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway

Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.

*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.

119


http://www.neuroprion.com/pdf_docs/conferences/prion2006/abstract_book.pdf


A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes

Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway

***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. *** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.


http://www.pnas.org/content/102/44/16031.abstract


Monday, December 1, 2008

When Atypical Scrapie cross species barriers

Authors

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

Content

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.

http://www.neuroprion.org/resources/pdf_docs/conferences/prion2008/abstract-book-prion2008.pdf

SCRAPIE, ATYPICAL, OVINE - AUSTRALIA: (WESTERN AUSTRALIA) SUSPECTED ******************************************************************* A ProMED-mail post ProMED-mail is a program of the International Society for Infectious Diseases

[1] Date: Fri 12 Mar 2010

Source: The Australian [edited]



A West Australian sheep has been found to have signs characteristic of the fatal brain disease atypical scrapie. It comes as Australia faces growing anger from its trade partners over the Rudd government's surprise decision to extend a ban on the importation of beef from countries exposed to mad cow disease for a further 2 years.

Australia's chief veterinarian, Andy Carroll, told the ABC an indicative case of the atypical scrapie had been confirmed but said it posed no risk to human or animal health or the safety of eating meat and animal products.

Nor does atypical scrapie carry the dire trade consequences associated with classical scrapie.

Classical scrapie is in the same transmissible spongiform encephalopathies (TSE) family as BSE, better known as mad cow disease, from which humans can be fatally infected.

Dr Carroll said samples from the sheep's brain were being sent to the World Reference Laboratory in Britain.

Neither atypical scrapie nor classical scrapie has been seen in Australia before, but a sheep in New Zealand tested positive to the atypical form last year [2009].

Atypical scrapie is a relatively recently discovered disease and the common scientific view is that it occurs spontaneously or naturally in very small numbers of older sheep in countries all over the world.

[Byline: Jodie Minus]

-- Communicated by: Sabine Zentis Castleview Pedigree English Longhorns Gut Laach 52385 Nideggen Germany

****** [2] Date: Wed 10 Mar 2010 Source: ABC News (Australian Broadcasting Corporation) [edited]

Animal health authorities are testing a sheep's brain for what could be Australia's 1st case of the disease atypical scrapie.

Although not confirmed, the sheep is thought to be from Western Australia.

This type of scrapie is described as a sporadic degenerative brain condition affecting older sheep, and is not contagious.

Ed Klim, from national advisory group SafeMeat, says a 2nd round of testing is now taking place. "We've been made aware that the Australian Animal Health Laboratory is conducting further routine testing on a sheep sample," he says.

"The disease isn't considered a health risk nor should have any impact on food safety or export markets for sheep meat of live sheep."

Australia's chief veterinarian and WA's Department of Agriculture of Food are both aware of the testing but will not comment.

-- Communicated by: Terry S Singeltary Sr

[Although atypical scrapie is not yet ruled out, it is important to realize this is a type of scrapie that thus far has only tended to appear as a sporadic condition in older animals. Currently it has not been shown to follow the same genetic tendencies for propagation as the usual scrapie.

However, the atypical phenotypic appearance has been shown to be preserved on experimental passage.

Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries, as Australia may join that list. It is likely that this case will be sent to the UK for definitive conformation.

[Ref: M Simmons, T Konold, L Thurston, et al. BMC Veterinary Research 2010, 6:14 [provisional abstract available at ]

"Background ----------- "Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. [Many of the neurological diseases can be transmitted by intracerebral inoculation, which causes this moderator to approach intracerebral studies as a tool for study, but not necessarily as a direct indication of transmissibility of natural diseases. - Mod.TG]

"The 1st successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.

"Results -------- "This study demonstrates that atypical scrapie has distinct clinical, pathological, and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.

"Conclusions ------------ Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage."

Lastly, this moderator wishes to thank Terry Singletary for some of his behind the scenes work of providing citations and references for this posting. - Mod.TG]

The HealthMap/ProMED-mail interactive map of Australia is available at . - Sr.Tech.Ed.MJ]

[see also: 2009 ---- Scrapie, atypical, ovine - New Zealand (02) 20091029.3740 Scrapie, atypical, ovine - New Zealand 20090220.0714 2007 ---- Scrapie, atypical, sheep - USA (WY): 1st report 20070318.0949 2005 ---- Scrapie, atypical, ovine - Falkland Islands 20051120.3371 2004 ---- Scrapie, atypical, sheep - UK and Ireland 20041210.3274 Scrapie, atypical, sheep - UK (02) 20040409.0965 Scrapie, atypical, sheep - UK 20040408.0952 Scrapie, atypical, sheep - France: OIE 20040201.0390] ...................................sb/tg/mj/lm

*##########################################################* ************************************************************



http://www.promedmail.org/pls/apex/f?p=2400:1001:3033292671016132::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1010,81729






Thursday, March 18, 2010

The natural atypical scrapie phenotype is preserved on experimental transmission and sub-passage in PRNP homologous sheep



http://nor-98.blogspot.com/2010/03/natural-atypical-scrapie-phenotype-is.html



1: J Infect Dis 1980 Aug;142(2):205-8

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

snip...

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

PMID: 6997404


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract


Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

snip...

76/10.12/4.6


http://web.archive.org/web/20010305223125/www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf



Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis). Gibbs CJ Jr, Gajdusek DC.

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).


http://www.nature.com/nature/journal/v236/n5341/abs/236073a0.html



EMBO reports 4, 5, 530–533 (2003) doi:10.1038/sj.embor.embor827 AOP Published online: 11 April 2003

Widespread PrPSc accumulation in muscles of hamsters orally infected with scrapie

Achim Thomzig, Christine Kratzel, Gudrun Lenz, Dominique Krüger & Michael Beekes

Robert Koch-Institut, P26, Nordufer 20, D-13353 Berlin, Germany

To whom correspondence should be addressed Michael Beekes Tel: +49 30 4547 2396; Fax: +49 30 4547 2609; BeekesM@rki.de

Received 13 February 2003; Accepted 13 March 2003; Published online 11 April 2003.

Abstract

Scrapie, bovine spongiform encephalopathy and chronic wasting disease are orally communicable, transmissible spongiform encephalopathies (TSEs). As zoonotic transmissions of TSE agents may pose a risk to human health, the identification of reservoirs for infectivity in animal tissues and their exclusion from human consumption has become a matter of great importance for consumer protection. In this study, a variety of muscles from hamsters that were orally challenged with scrapie was screened for the presence of a molecular marker for TSE infection, PrPSc (the pathological isoform of the prion protein PrP). Sensitive western blotting revealed consistent PrPSc accumulation in skeletal muscles from forelimb and hindlimb, head, back and shoulder, and in tongue. Previously, our animal model has provided substantial baseline information about the peripheral routing of infection in naturally occurring and orally acquired ruminant TSEs. Therefore, the findings described here highlight further the necessity to investigate thoroughly whether muscles of TSE-infected sheep, cattle, elk and deer contain infectious agents.

EMBO reports 4, 5, 530–533 (2003) doi:10.1038/sj.embor.embor827 AOP Published online: 11 April 2003



http://www.nature.com/embor/journal/v4/n5/full/embor827.html





EVIDENCE OF SCRAPIE IN SHEEP AS A RESULT OF FOOD BORNE EXPOSURE

This is provided by the statistically significant increase in the incidence of sheep scrape from 1985, as determined from analyses of the submissions made to VI Centres, and from individual case and flock incident studies. ........



http://web.archive.org/web/20030517224223/http://www.bseinquiry.gov.uk/files/yb/1994/02/07002001.pdf


Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518