Monday, September 19, 2016

Identification of the first case of atypical scrapie in Japan

Date: 30 Aug 2016 J-STAGE Advance Published Date: 11 Sep 2016 1 Note Public Health 2 3

 

Identification of the first case of atypical scrapie in Japan

 

4 5 Morikazu IMAMURA, Kohtaro MIYAZAWA*, Yoshifumi IWAMARU, Yuichi 6 MATSUURA, Takashi YOKOYAMA and Hiroyuki OKADA* 7 8 National Institute of Animal Health, National Agriculture and Food Research Organization 9 (NARO), Tsukuba, Ibaraki 305-0856, Japan 10 11 *CORRESPONDENCE TO: MIYAZAWA, K. or OKADA, H., National Institute of Animal 12 Health, 3-1-5 Kan-nondai, Tsukuba, Ibaraki 305-0856, Japan 13 E-mail: miyazawak@affrc.go.jp; okadahi@affrc.go.jp 14 15 Running head: Atypical Scrapie in Japan

 

ABSTRACT.

 

A Corriedale ewe was confirmed as the first atypical scrapie case during an active surveillance program for transmissible spongiform encephalopathies in small ruminants in Japan. The animal was homozygous for the AF141RQ haplotype of PRNP. The animal showed clinical neurological signs possibly due to listeriosis before culling. Western blot analysis showed an unusual multiple banded pattern with a low-molecular fragment at ~7 kDa. Histopathology revealed suppurative meningoencephalitis caused by listeriosis in the brainstem. Fine granular to globular immunostaining of disease-associated prion proteins was mainly detected in the neuropil of the spinal tract of the trigeminal nerve and in the white matter of the spinocerebellar tract. Based on these results, this case was conclusively diagnosed as atypical scrapie with encephalitic listeriosis.

 

KEY WORDS: atypical scrapie, coinfection, listeriosis, PRNP genotype, surveillance

 


 

From: TSS

 

Subject: PrPSc distribution of a natural case of bovine spongiform encephalopathy

 

Date: August 8, 2005 at 12:28 pm PST

 

PrPSc distribution of a natural case of bovine spongiform encephalopathy

 

Yoshifumi Iwamaru, Yuka Okubo, Tamako Ikeda, Hiroko Hayashi, Mori- kazu Imamura, Takashi Yokoyama and Morikazu Shinagawa Priori Disease Research Center, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba 305-0856 Japan gan@affrc.go.jp

 

Abstract

 

Bovine spongiform encephalopathy (BSE) is a disease of cattle that causes progressive neurodegeneration of the central nervous system. Infectivity of BSE agent is accompanied with an abnormal isoform of prion protein (PrPSc). The specified risk materials (SRM) are tissues potentially carrying BSE infectivity. The following tissues are designated as SRM in Japan: the skull including the brain and eyes but excluding the glossa and the masse- ter muscle, the vertebral column excluding the vertebrae of the tail, spinal cord, distal illeum. For a risk management step, the use of SRM in both animal feed or human food has been prohibited. However, detailed PrPSc distribution remains obscure in BSE cattle and it has caused controversies about definitions of SRM. Therefore we have examined PrPSc distribution in a BSE cattle by Western blotting to reassess definitions of SRM.

 

The 11th BSE case in Japan was detected in fallen stock surveillance. The carcass was stocked in the refrigerator. For the detection of PrPSc, 200 mg of tissue samples were homogenized. Following collagenase treatment, samples were digested with proteinase K. After digestion, PrPSc was precipitated by sodium phosphotungstate (PTA). The pellets were subjected to Western blotting using the standard procedure. Anti-prion protein monoclonal antibody (mAb) T2 conjugated horseradish peroxidase was used for the detection of PrPSc.

 

PrPSc was detected in brain, spinal cord, dorsal root ganglia, trigeminal ganglia, sublingual ganglion, retina. In addition, PrPSc was also detected in the peripheral nerves (sciatic nerve, tibial nerve, vagus nerve). Our results suggest that the currently accepted definitions of SRM in BSE cattle may need to be reexamined.

 

9/13/2005 179 Page 10 of 17

 

T. Kitamoto (Ed.)

 

PRIONS

 

Food and Drug Safety

 

================

 

ALSO from the International Symposium of Prion Diseases held in Sendai, October 31, to November 2, 2004;

 

Bovine spongiform encephalopathy (BSE) in Japan

 

snip...

 

"Furthermore, current studies into transmission of cases of BSE that are atypical or that develop in young cattle are expected to amplify the BSE prion" NO. Date conf. Farm Birth place and Date Age at diagnosis

 

8.

 

2003.10.6. Fukushima Tochigi 2001.10.13. 23

 

9.

 

2003.11.4. Hiroshima Hyogo 2002.1.13. 21

 

Test results

 

# 8b, 9c cows Elisa Positive, WB Positive, IHC negative, histopathology negative

 

b = atypical BSE case

 

c = case of BSE in a young animal

 

b,c, No PrPSc on IHC, and no spongiform change on histology

 

International Symposium of Prion Diseases held in Sendai, October 31, to November 2, 2004.

 

Tetsuyuki Kitamoto Professor and Chairman Department of Prion Research Tohoku University School of Medicine 2-1 SeiryoAoba-ku, Sendai 980-8575, JAPAN TEL +81-22-717-8147 FAX +81-22-717-8148 e-mail; kitamoto@mail.tains.tohoku.ac.jp Symposium Secretariat Kyomi Sasaki TEL +81-22-717-8233 FAX +81-22-717-7656 e-mail: kvomi-sasaki@mail.tains.tohoku.ac.ip

 

=================================

 

9/13/2005

 

--------------------------------------

 

Page 11 of 17 From: TSS

 

Subject: Atypical Proteinase K-Resistant Prion Protein (PrPres) observed in an Apparently Healthy 23-Month-Old Holstein Steer

 

Date: August 26, 2005 at 10:24 am PST

 

Atypical Proteinase K-Resistant Prion Protein (PrPres) observed in an Apparently Healthy 23-Month-Old Holstein Steer

 

Jpn. J. Infect. Dis., 56, 221-222, 2003

 

Laboratory and Epidemiology Communications

 

Atypical Proteinase K-Resistant Prion Protein (PrPres) Observed in an Apparently Healthy 23-Month-Old Holstein Steer

 

Yoshio Yamakawa*, KenÕichi Hagiwara, Kyoko Nohtomi, Yuko Nakamura, Masahiro Nishizima ,Yoshimi Higuchi1, Yuko Sato1, Tetsutaro Sata1 and the Expert Committee for BSE Diagnosis, Ministry of Health, Labour and Welfare of Japan2 Department of Biochemistry & Cell Biology and 1Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640 and 2Miistry of Health, Labour and Welfare, Tokyo 100-8916 Communicated by Tetsutaro Sata

 

(Accepted December 2, 2003)

 

*Corresponding author: Mailing address: Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 1628640, Japan. Tel: +81-3-5285-1111, Fax: +81-3-5285-1157, E-mail: yamakawa@nih.go.jp

 

Since October 18, 2001, 'bovine spongiform encephalopathy (BSE) examination for all cattle slaughtered at abattoirs in the country' has been mandated in Japan by the Ministry of Health, Labour and Welfare (MHLW). 'Plateria' ELISA-kit (Bio-Rad Laboratories, Hercules, Calif., USA) is routinely used at abattoirs for detecting proteinase K (PK)-resistant prion protein (PrPSc) in the obex region. Samples positive according to the ELISA screening are further subjected to Western blot (WB) and histologic and immunohistochemical examination (IHC) at the National Institute of Infectious Diseases (NIID) or Obihiro University. If PrPSc is detected either by WB or by IHC, the cattle are diagnosed as BSE. The diagnosis is approved by the Expert Committee for BSE Diagnosis, MHLW. From October 18, 2001 to September 30, 2003, approximately 2.5 million cattle were screened at abattoirs. A hundred and ten specimens positive according to ELISA were subjected to WB/IHC. Seven showed positive by both WB and IHC, all exhibiting the typical electrophoretic profile of a high content of the di-glycosylated molecular form of PrPSc (1-3) and the distinctive granular deposition of PrPSc in neuronal cells and neuropil of the dorsal nucleus of vagus.

 

An ELISA-positive specimen from a 23 month-old Holstein steer slaughtered on September 29, 2003, in Ibaraki Prefecture (Ibaraki case) was sent to the NIID for confirmation. The animal was reportedly healthy before slaughter. The OD titer in ELISA was slightly higher than the 'cut-off' level given by the manufacturer. The histology showed no spongiform changes and IHC revealed no signal of PrPSc accumulation typical for BSE. However, WB analysis of the homogenate that was prepared from the obex region and used for ELISA revealed a small amount of PrPSc with an electrophoretic profile different from that of typical BSE-associated PrPSc (1-3). The characteristics were (i) low content of the di-glycosylated molecular form of PrPSc, (ii) a faster migration of the non-glycosylated form of PrPSc on SDS-PAGE, and (iii) less resistance against PK digestion as compared with an authentic PrPSc specimen derived from an 83-month-old Holstein (Wakayama case) (Fig. 1). Table 1 summarizes the relative amounts of three distinctive glycoforms (di-, mono, non-glycosylated) of PrPSc calculated by densitometric analysis of the blot shown in Fig. 1. As 2.5 mg wet weight obex-equivalent homogenate of the Ibaraki case (Fig. 1, lane 4) gave slightly stronger band intensities of PrPSc than an 8 mg wet weight obex-equivqlent homogenate of a typical BSE-affected Wakayama case (Fig. 1, lane 2), the amount of PrPSc accumulated in the Ibaraki case was calculated to be 1/500 - 1/1000 of the Wakayama case. In the Ibaraki case, the PrPSc bands were not detectable in the homogenates of the proximal surrounding region of the obex. These findings were consistent with the low OD value in ELISA, i.e., 0.2 -0.3 for the Ibaraki case versus over 3.0 for the Wakayama case. The DNA sequence of the PrP coding region of the Ibaraki case was the same as that appearing in the database (GenBank accession number: AJ298878). More recently, we encountered another case that resembled the Ibaraki case. It was a 21-monthold Holstein steer from Hiroshima Prefecture. WB showed typical BSE-specific PrPSc deposition though IHC did not detect positive signals of PrPSc (data not shown).

 

Though the clinical onset of BSE is usually at around 5 years of age or later, a 20-month-old case showing the clinical signs has been reported (4). Variant forms of BSE similar to our cases, i.e., with atypical histopathological and/or biochemical phenotype, have been recently reported in Italy (5) and in France (6). Such variant BSE was not associated with mutations in the prion protein (PrP) coding region as in our case (5,6). The Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF) announced a ban of feeding ruminants with meat bone meal (MBM) on September 18, 2001, and a complete ban was made on October 15 of the same year. According to the recent MAFF report, the previous seven cases of BSE in Japan were cattle born in 1995 - 1996 and possibly fed with cross-contaminated feed. However, the two cattle in this report were born after the complete ban. Whether contaminated MBM was implicated in the present cases remains to be investigated.

 

REFERENCES

 

Collinge, J., Sidle, K. C. L., Meads, J., Ironside, J. and Hill, A. F. (1996): Molecular analysis of prion strain variation and the aetiology of 'new variant' CJD. Nature, 383, 685690. Bruce, M. E., Will, R. G., Ironside, J. W., McConnell, I., Drummond, D., Suttie, A., McCardle, L., Chree, A., Hope, J., Birkett, C., Cousens, S., Fraser, H. and Bostock, C. J. (1997): Transmissions to mice indicate that 'new variant' CJD is caused by the BSE agent. Nature, 389, 498-501. Hill, A. F., Desbruslais, M., Joiner, S., Sidle, K. C. L., Gowland, I. and Collinge, J. (1997): The same prion strain causes vCJD and BSE. Nature, 389, 448-450. Matravers, W., Bridgeman, J. and Smith, M.-F. (ed.)(2000): The BSE Inquiry. p. 37. vol. 16. The Stationery Office Ltd., Norwich, UK. Casalone, C., Zanusso, G., Acutis, P. L., Crescio, M. I., Corona, C., Ferrari, S., Capobianco, R., Tagliavini, F., Monaco, S. and Caramelli, M. (2003): Identification of a novel molecular and neuropathological BSE phenotype in Italy. International Conference on Prion Disease: from basic research to intervention concepts. Gasreig, Munhen, October 8-10. Bicaba, A. G., Laplanche, J. L., Ryder, S. and Baron, T. (2003): A molecular variant of bovine spongiform encephalopatie. International Conference on Prion Disease: from basic research to intervention concepts. Gasreig, Munhen, October 8-10. Asante, E. A., Linehan, J. M., Desbruslais, M., Joiner, S., Gowland, I., Wood, A. L., Welch, J., Hill, A. F., Lloyd, S. E., Wadsworth, J. D. F. and Collinge, J. (2002). BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J., 21, 6358-6366.

 

9/13/2005 Page 12 of 17

 

SEE SLIDES IN PDF FILE;

 


 

Published online January 27, 2005

 

Risk of oral infection with bovine spongiform encephalopathy agent in primates

 

Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)—which can lead to variant Creutzfeldt-Jakob disease (vCJD)—is compounded by incomplete knowledge about the ef.ciency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these .ndings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.

 

snip...

 

BSE bovine brain inoculum

 

100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0·1 mg 0·01 mg

 

Primate (oral route)* 1/2 (50%)

 

Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)

 

RIII mice (ic�ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)

 

PrPres biochemical detection ���

 

The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the .rst positive animal (%).

 

The accuracy of bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and intraperitoneal.

 

Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula

 

snip...end

 

www.thelancet.com Published online January 27, 2005

 


 

Epidemiology and Infection, Volume 144, Issue 10 July 2016, pp. 2107-2116

 

Epidemiological investigations on the potential transmissibility of a rare disease: the case of atypical scrapie in Great Britain

 

A. ORTIZ-PELÁEZ (a1), M. E. ARNOLD (a1) and A. VIDAL-DIEZ (a2) (a1) 1Department of Epidemiological Sciences, Animal and Plant Health Agency, New Haw, Addlestone, Surrey, UK (a2) 2Population Health Research Institute, St Georgés University of London, Tooting, London, UK DOI: http://dx.doi.org/10.1017/S0950268816000303

 

Published online: 15 March 2016

 

Abstract

 

Multiple cases of atypical scrapie in the same holding and co-existence with classical scrapie have been reported in Great Britain. A two-stage simulation tool was developed by combining a sampling algorithm and a hierarchical Bayesian model to simulate the number of positive cases of atypical scrapie from: (i) random sampling and (ii) using the actual sampled population in Great Britain, being the output probability of detection of flocks with one and more cases. Cluster analysis was conducted to assess the level of geographical over- and under-sampling over the years. The probability of detecting at least two cases of atypical scrapie in the same holding is much lower in simulated random data than in simulated actual data for all scenarios. Sampling bias in the selection of sheep for testing led to multiple sampling from fewer but larger holdings, Scotland, and areas of Wales were under-sampled and the South-West and East of England oversampled. The pattern of atypical scrapie cases observed is unlikely to be explained by a multi-case event epidemiologically linked. The co-existence of classical and atypical scrapie is a rare event with 19 holdings detected in GB and does not suggest an epidemiological link between the two types of disease.

 


 

 Journal of Veterinary Medical Science Article ID: 16-0259

 

Language: English Japanese Previous Article | Next Article

 


 

Advance Publication Transmission of atypical scrapie to homozygous ARQ sheep

 

Hiroyuki OKADA1), Kohtaro MIYAZAWA1), Morikazu IMAMURA1), Yoshifumi IWAMARU1), Kentaro MASUJIN1), Yuichi MATSUURA1), Takashi YOKOYAMA1) 1) National Institute of Animal Health, National Agriculture and Food Research Organization (NARO)

 

[Advance Publication] Released 2016/06/20

 

Keywords: ARQ allele, atypical scrapie, prion, sheep, transmission

 

Two Cheviot ewes homozygous for the A136L141R154Q171 (AL141RQ) prion protein (PrP) genotype were exposed intracerebrally to brain pools prepared using four field cases of atypical scrapie from the United Kingdom. Animals were clinically normal until the end of the experiment, when they were culled 7 years post-inoculation. Limited accumulation of disease-associated PrP (PrPSc) was observed in the cerebellar molecular layer by immunohistochemistry, but not by western blot or enzyme-linked immunosorbent assay. In addition, PrPSc was partially localized in astrocytes and microglia, suggesting that these cells have a role in PrPSc processing, degradation or both. Our results indicate that atypical scrapie is transmissible to AL141RQ sheep, but these animals act as clinically silent carriers with long incubation times.

 

 snip...

 

following considerations: (1) even regarding atypical scr 132 apie to be contagious, each animal 133 was reared separately in a single pen; and (2) according to epidemiological studies, the 134 incidence of this disease among AL141RQ sheep in the field is far too low for this to be a 135 concern, with atypical scrapie naturally occurring as a single case in a flock [1, 2, 6, 26, 31, 136 39, 42, 48]. Therefore, the likelihood of two ewes contracting this condition at the same time 137 during the investigation in a manner unrelated to the experiment seems negligible. It can thus 138 be concluded that the natural occurrence of atypical scrapie during this study can be excluded 139 for these reasons.

 


 

P03.141

 

Aspects of the Cerebellar Neuropathology in Nor98

 

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

 

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

 

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

 


 

PR-26

 

NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS

 

R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway

 

Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.

 

*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.

 

119

 


 

A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes

 

Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations

 

*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway

 

***Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)

 

Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. *** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.

 


 

Monday, December 1, 2008

 

When Atypical Scrapie cross species barriers

 

Authors

 

Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.

 

Content

 

Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.

 

The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.

 

Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.

 

Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.

 

(i) the unsuspected potential abilities of atypical scrapie to cross species barriers

 

(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier

 

These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.

 


 

RESEARCH

 

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 5, May 2011

 

Experimental Oral Transmission of Atypical Scrapie to Sheep

 

Marion M. Simmons, S. Jo Moore,1 Timm Konold, Lisa Thurston, Linda A. Terry, Leigh Thorne, Richard Lockey, Chris Vickery, Stephen A.C. Hawkins, Melanie J. Chaplin, and John Spiropoulos

 

To investigate the possibility of oral transmission of atypical scrapie in sheep and determine the distribution of infectivity in the animals’ peripheral tissues, we challenged neonatal lambs orally with atypical scrapie; they were then killed at 12 or 24 months. Screening test results were negative for disease-specifi c prion protein in all but 2 recipients; they had positive results for examination of brain, but negative for peripheral tissues. Infectivity of brain, distal ileum, and spleen from all animals was assessed in mouse bioassays; positive results were obtained from tissues that had negative results on screening. These fi ndings demonstrate that atypical scrapie can be transmitted orally and indicate that it has the potential for natural transmission and iatrogenic spread through animal feed. Detection of infectivity in tissues negative by current surveillance methods indicates that diagnostic sensitivity is suboptimal for atypical scrapie, and potentially infectious material may be able to pass into the human food chain.

 

SNIP...

 

Although we do not have epidemiologic evidence that supports the effi cient spread of disease in the fi eld, these data imply that disease is potentially transmissible under fi eld situations and that spread through animal feed may be possible if the current feed restrictions were to be relaxed. Additionally, almost no data are available on the potential for atypical scrapie to transmit to other food animal species, certainly by the oral route. However, work with transgenic mice has demonstrated the potential susceptibility of pigs, with the disturbing fi nding that the biochemical properties of the resulting PrPSc have changed on transmission (40). The implications of this observation for subsequent transmission and host target range are currently unknown.

 

How reassuring is this absence of detectable PrPSc from a public health perspective? The bioassays performed in this study are not titrations, so the infectious load of the positive gut tissues cannot be quantifi ed, although infectivity has been shown unequivocally. No experimental data are currently available on the zoonotic potential of atypical scrapie, either through experimental challenge of humanized mice or any meaningful epidemiologic correlation with human forms of TSE. However, the detection of infectivity in the distal ileum of animals as young as 12 months, in which all the tissues tested were negative for PrPSc by the currently available screening and confi rmatory diagnostic tests, indicates that the diagnostic sensitivity of current surveillance methods is suboptimal for detecting atypical scrapie and that potentially infectious material may be able to pass into the human food chain undetected.

 

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 17, No. 5, May 2011

 


 

Monday, April 25, 2011

 

Experimental Oral Transmission of Atypical Scrapie to Sheep

 

Volume 17, Number 5-May 2011

 


 

Friday, February 11, 2011

 

Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues

 


 

Tuesday, April 28, 2009

 

Nor98-like Scrapie in the United States of America

 


 


 

Thursday, March 29, 2012

 

atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012

 

NIAA Annual Conference April 11-14, 2011San Antonio, Texas

 


 

*** Canada Increased Atypical Scrapie Detections

 

Press reports indicate that increased surveillance is catching what otherwise would have been unreported findings of atypical scrapie in sheep. In 2009, five new cases have been reported in Quebec, Ontario, Alberta, and Saskatchewan. With the exception of Quebec, all cases have been diagnosed as being the atypical form found in older animals. Canada encourages producers to join its voluntary surveillance program in order to gain scrapie-free status. The World Animal Health will not classify Canada as scrapie-free until no new cases are reported for seven years. The Canadian Sheep Federation is calling on the government to fund a wider surveillance program in order to establish the level of prevalence prior to setting an eradication date. Besides long-term testing, industry is calling for a compensation program for farmers who report unusual deaths in their flocks.

 


 


 

2016 PRION CONFERENCE

 

SCRAPIE ZOONOSIS

 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

 

Taylor & Francis

 

Prion 2016 Animal Prion Disease Workshop Abstracts

 

WS-01: Prion diseases in animals and zoonotic potential

 

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

 

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

 

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

 

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

 

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

 

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

 

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 


 

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

 

Title: Transmission of scrapie prions to primate after an extended silent incubation period

 

Authors

 

item Comoy, Emmanuel - item Mikol, Jacqueline - item Luccantoni-Freire, Sophie - item Correia, Evelyne - item Lescoutra-Etchegaray, Nathalie - item Durand, Valérie - item Dehen, Capucine - item Andreoletti, Olivier - item Casalone, Cristina - item Richt, Juergen item Greenlee, Justin item Baron, Thierry - item Benestad, Sylvie - item Hills, Bob - item Brown, Paul - item Deslys, Jean-Philippe -

 

Submitted to: Scientific Reports Publication Type: Peer Reviewed Journal Publication Acceptance Date: May 28, 2015 Publication Date: June 30, 2015 Citation: Comoy, E.E., Mikol, J., Luccantoni-Freire, S., Correia, E., Lescoutra-Etchegaray, N., Durand, V., Dehen, C., Andreoletti, O., Casalone, C., Richt, J.A., Greenlee, J.J., Baron, T., Benestad, S., Brown, P., Deslys, J. 2015. Transmission of scrapie prions to primate after an extended silent incubation period. Scientific Reports. 5:11573.

 

Interpretive Summary: The transmissible spongiform encephalopathies (also called prion diseases) are fatal neurodegenerative diseases that affect animals and humans. The agent of prion diseases is a misfolded form of the prion protein that is resistant to breakdown by the host cells. Since all mammals express prion protein on the surface of various cells such as neurons, all mammals are, in theory, capable of replicating prion diseases. One example of a prion disease, bovine spongiform encephalopathy (BSE; also called mad cow disease), has been shown to infect cattle, sheep, exotic undulates, cats, non-human primates, and humans when the new host is exposed to feeds or foods contaminated with the disease agent. The purpose of this study was to test whether non-human primates (cynomologous macaque) are susceptible to the agent of sheep scrapie. After an incubation period of approximately 10 years a macaque developed progressive clinical signs suggestive of neurologic disease. Upon postmortem examination and microscopic examination of tissues, there was a widespread distribution of lesions consistent with a transmissible spongiform encephalopathy. This information will have a scientific impact since it is the first study that demonstrates the transmission of scrapie to a non-human primate with a close genetic relationship to humans. This information is especially useful to regulatory officials and those involved with risk assessment of the potential transmission of animal prion diseases to humans. Technical Abstract: Classical bovine spongiform encephalopathy (c-BSE) is an animal prion disease that also causes variant Creutzfeldt-Jakob disease in humans. Over the past decades, c-BSE's zoonotic potential has been the driving force in establishing extensive protective measures for animal and human health.

 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.

 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.

 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.

 


 

2015

 

O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations

 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France

 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods.

 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period,

 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014),

 

***is the third potentially zoonotic PD (with BSE and L-type BSE),

 

***thus questioning the origin of human sporadic cases. We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health.

 

===============

 

***thus questioning the origin of human sporadic cases***

 

===============

 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals.

 

==============

 


 

Tuesday, December 16, 2014

 

*** Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE.

 

***The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans.

 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

see more here ;

 


 

***The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans.***

 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.***

 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

1: J Infect Dis 1980 Aug;142(2):205-8

 

Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.

 

Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.

 

Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.

 

snip...

 

The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.

 

PMID: 6997404

 


 

Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates. One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias"

 

Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.

 

snip...

 

76/10.12/4.6

 


 

Nature. 1972 Mar 10;236(5341):73-4.

 

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

 

Gibbs CJ Jr, Gajdusek DC.

 

Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

 

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

 

C. J. GIBBS jun. & D. C. GAJDUSEK

 

National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

 

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).

 


 


 

USDA OIE AND THE DUMBING DOWN OF THE TSE PRION DISEASE SCRAPIE AND ATYPICAL SCRAPIE, just spreading the love around $$$

 

Proposed Rules Planned for Publication:

 

• VS published revisions to 9 CFR parts 54 and 79. The proposed changes are intended to improving the effectiveness and cost efficiency of surveillance and to increase animal identification compliance by addressing gaps in identification and by requiring States to meet reasonable surveillance targets to remain consistent States. States must meet these targets for VS to demonstrate geographically appropriate surveillance to meet the criteria for freedom and have confidence that all of the remaining cases have been found.

 

• The rule would propose to:

 

o Give the APHIS Administrator authority to relieve requirements for sheep and goats exposed to scrapie types, such as Nor98-like, that do not pose a significant risk of transmission;

 

o Increase flexibility in how investigations can be conducted and allow the epidemiology in a specific flock to be given more consideration in determining flock and animal status;

 

o Add a genetic-based approach to regulation;

 

o Make goat identification requirements similar to those for sheep to support ongoing slaughter surveillance in goats (no changes will be made in the consistent State requirements regarding identification of goats in intrastate commerce);

 

o Tighten the definition of slaughter channels;

 

o Expand the individual identification requirement to all sexually intact animals unless moving as a group/lot (allows mixed-source groups moving in slaughter channels at under 18 months);

 

o Limit the use of tattoos and implants to animals not moving through markets and not in slaughter channels; and

 

o Reduce recordkeeping requirements by making them similar to the current uniform methods and rules compliance guidance.

 

• APHIS is also revising its scrapie import regulations to bring them more in line with the OIE scrapie chapter. This will ensure that we meet OIE criteria for free status and prevent the reintroduction of scrapie after free status is achieved.

 

snip...

 

Regarding our studies on modes of prion transmission, we very recently completed and are finalizing analyses for a 7-year study on Nor98-like scrapie in breeding ewes. Ewes were experimentally inoculated with brain homogenate obtained from a US sheep with clinical Nor98-like scrapie. Recipient ewes were bred annually to examine the placenta for evidence of a transmissible agent. One recipient ewe developed an unrelated disease in her 5th year of scrapie incubation. At postmortem examination, a Nor98-like pattern of misfolded prion protein, PrP-Sc, accumulation was observed. Similar findings were recently confirmed through postmortem examination of the other three ewes in the 7th year of scrapie incubation. These results confirm that inoculation of these ewes was successful. Not all placental tissue analyses have yet been completed, but there has been no evidence of placental accumulation of PrP-Sc out to the 6th year of infection. We have recently confirmed that the classical scrapie prions which accumulate in the placenta of goats are infectious to sheep. Similarly, transmission to sheep has also occurred via the milk of infected goats. Thus, both the placenta and milk of infected goats are significant transmission risks to sheep.

 

Finally, we are nearing the completion of a study to determine if transgenic mice can be used to differentiate the origin of prions in new cases of scrapie disease in sheep and goats raised in regions with endemic chronic wasting disease (CWD) in cervids. The results show that transgenic mice bearing a susceptible prion protein are readily susceptible to classical scrapie prions derived from naturally infected sheep and goats but not to CWD prions derived from naturally infected cervids. The converse was true for transgenic mice bearing a susceptible cervid prion protein. Both types of mice were only intermediately susceptible to CWD prions derived from experimentally infected sheep. Thus, to date, the results suggest this bioassay model can discriminate between these sources of prions in new cases of prion disease in small ruminants from regions in which CWD is endemic in cervid populations.

 


 

Evidence of scrapie transmission to sheep via goat milk

 

Timm KonoldEmail author, Leigh Thorne, Hugh A. Simmons, Steve A. C. Hawkins, Marion M. Simmons and Lorenzo González

 

BMC Veterinary ResearchBMC series – open, inclusive and trusted201612:208

 

DOI: 10.1186/s12917-016-0807-4

 

© Crown copyright; licensee BioMed Central Ltd. 2016

 

Received: 29 April 2016

 

Accepted: 19 August 2016

 

Published: 17 September 2016

 

 Abstract

 

 Background

 

Previous studies confirmed that classical scrapie can be transmitted via milk in sheep. The current study aimed to investigate whether scrapie can also be transmitted via goat milk using in vivo (new-born lambs fed milk from scrapie-affected goats due to the unavailability of goat kids from guaranteed scrapie-free herds) and in vitro methods (serial protein misfolding cyclic amplification [sPMCA] on milk samples).

 

Results

 

In an initial pilot study, new-born lambs of two different prion protein gene (PRNP) genotypes (six VRQ/VRQ and five ARQ/ARQ) were orally challenged with 5 g brain homogenate from two scrapie-affected goats to determine susceptibility of sheep to goat scrapie. All sheep challenged with goat scrapie brain became infected based on the immunohistochemical detection of disease-associated PrP (PrPsc) in lymphoid tissue, with an ARQ/ARQ sheep being the first to succumb. Subsequent feeding of milk to eight pairs of new-born ARQ/ARQ lambs, with each pair receiving milk from a different scrapie-affected goat, resulted in scrapie in the six pairs that received the largest volume of milk (38–87 litres per lamb), whereas two pairs fed 8–9 litres per lamb, and an environmental control group raised on sheep milk from healthy ewes, did not show evidence of infection when culled at up to 1882 days of age. Infection in those 12 milk recipients occurred regardless of the clinical status, PrPsc distribution, caprine arthritis-encephalitis virus infection status and PRNP polymorphisms at codon 142 (II or IM) of the donor goats, but survival time was influenced by PRNP polymorphisms at codon 141. Serial PMCA applied to a total of 32 milk samples (four each from the eight donor goats collected throughout lactation) detected PrPsc in one sample each from two goats.

 

Conclusions

 

The scrapie agent was present in the milk from infected goats and was able to transmit to susceptible species even at early preclinical stage of infection, when PrPsc was undetectable in the brain of the donor goats. Serial PMCA as a PrPsc detection method to assess the risk of scrapie transmission via milk in goats proved inefficient compared to the bioassay.

 

Keywords Transmissible spongiform encephalopathy – Scrapie – Goat – Sheep – Milk – Colostrum – Transmission – Protein misfolding cyclic amplification – Prion protein – Genotype

 

see full text ;

 


 

Monday, September 19, 2016

 

Evidence of scrapie transmission to sheep via goat milk

 


 

Thursday, December 20, 2012

 

OIE GROUP RECOMMENDS THAT SCRAPE PRION DISEASE BE DELISTED, WISHES TO CONTINUE SPREADING IT AROUND THE GLOBE

 


 

Monday, November 30, 2009

 

USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE, DOES NOT SURPRISE ME $

 


 

Wednesday, August 31, 2016

 

NORWAY CONFIRMS 4TH CASE OF CHRONIC WASTING DISEASE CWD TSE PRION IN SECOND CARIBOU

 


 

Monday, September 05, 2016

 

*** Pathological features of chronic wasting disease in reindeer and demonstration of horizontal transmission Major Findings for Norway

 


 

Wednesday, September 7, 2016

 

*** An assessment of the long-term persistence of prion infectivity in aquatic environments

 


 

Friday, September 02, 2016

 

*** Chronic Wasting Disease Drives Population Decline of White-Tailed Deer

 


 

Saturday, September 17, 2016

 

*** Texas Parks Wildlife Chronic Wasting Disease CWD Management and Regulations for Hunters 2016 – 2017

 


 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie Experiment 1964

 

How Did CWD Get Way Down In Medina County, Texas?

 

Confucius ponders...

 

Could the Scrapie experiments back around 1964 at Moore Air Force near Mission, Texas, could this area have been ground zero for CWD TSE Prion (besides the CWD cases that have waltzed across the Texas, New Mexico border near WSMR Trans Pecos region since around 2001)?

 

Epidemiology of Scrapie in the United States 1977

 

snip...

 

Scrapie Field Trial Experiments Mission, Texas

 

A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission, Texas. It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease.

 

The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. The station was divided into 2 areas: (1) a series of pastures and-pens occupied by male animals only, and (2) a series of pastures and pens occupied by females and young progeny of both sexes. ...

 

snip...see full text ;

 


 

Thursday, June 09, 2016

 

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964

 

How Did CWD Get Way Down In Medina County, Texas?

 


 


 

Friday, April 22, 2016

 

*** Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer

 


 

Monday, August 29, 2016

 

*** NWHC USGS CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

 


 

 

1-14 of 14 2012

 

Terry S. Singeltary Sr. 9/3/12

 

 JAPAN BANS DEER AND ELK MEAT AND ALLOWS SOME BEEF PRODUCTS, what about TSE prion concerns ?

 


 

Terry S. Singeltary Sr. 1/5/12

 

 Importation of Whole Cuts of Boneless Beef from Japan [Docket No. 05-004-1] RIN 0579-AB93

 


 

Terry S. Singeltary Sr. 10/15/10

 

 U.S. Beef Talks May Progress as Japan Gathers Mad-Cow Disease Risk Data about U.S.A.

 


 

Sunday, August 28, 2016

 

*** CONFIDENTIAL ***

 

Transmissible Spongiform Encephalopathy TSE Prion and how Politics and Greed by the Industry spread madcow type diseases from species to species and around the globe

 

TSE PRIONS AKA MAD COW TYPE DISEASE, LIONS AND TIGERS AND BEARS, OH MY!

 


 


 

Saturday, December 12, 2015

 

NOTICE: Environmental Impact Statement on Large Livestock Carcasses TSE Prion REPORT December 14, 2015

 


 

Friday, August 14, 2015

 

Carcass Management During a Mass Animal Health Emergency Draft Programmatic Environmental Impact Statement—August 2015

 


 


 

food for thought, specified risk materials srm’s, TSE Prions anyone...

 

Thursday, August 25, 2016

 

FSIS Green Bay Dressed Beef Recalls Beef Products Due To Possible Specified Risk Materials Contamination the most high risk materials for BSE TSE PRION AKA MAD COW TYPE DISEASE

 


 

Tuesday, December 16, 2014

 

Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS.

 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated.

 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains.

 


 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

 

Taylor & Francis

 

Prion 2016 Animal Prion Disease Workshop Abstracts

 

WS-01: Prion diseases in animals and zoonotic potential

 

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

 

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

 

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

 

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

 

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

 

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

 

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 


 


 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

SCRAPIE AND CWD ZOONOSIS

 

PRION 2016 CONFERENCE TOKYO

 

Saturday, April 23, 2016

 

*** SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016 ***

 

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X

 


 

Transmission of scrapie prions to primate after an extended silent incubation period

 

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

 


 

 

CWD TSE PRION HUMAN ZOONOSIS POTENTIAL, has it already happened, and being masked as sporadic CJD? and what about iatrogenic, or the pass if forward, friendly fire mode of transmission of cwd to humans, same thing, sporadic cjd ?

 

*** WDA 2016 NEW YORK ***

 

We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions.

 

Student Presentations Session 2

 

The species barriers and public health threat of CWD and BSE prions

 

Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University

 

Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD.

 

Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders

 


 


 

PRION 2016 TOKYO

 

Zoonotic Potential of CWD Prions: An Update

 

Ignazio Cali1, Liuting Qing1, Jue Yuan1, Shenghai Huang2, Diane Kofskey1,3, Nicholas Maurer1, Debbie McKenzie4, Jiri Safar1,3,5, Wenquan Zou1,3,5,6, Pierluigi Gambetti1, Qingzhong Kong1,5,6

 

1Department of Pathology, 3National Prion Disease Pathology Surveillance Center, 5Department of Neurology, 6National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.

 

4Department of Biological Sciences and Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada,

 

2Encore Health Resources, 1331 Lamar St, Houston, TX 77010

 

Chronic wasting disease (CWD) is a widespread and highly transmissible prion disease in free-ranging and captive cervid species in North America. The zoonotic potential of CWD prions is a serious public health concern, but the susceptibility of human CNS and peripheral organs to CWD prions remains largely unresolved. We reported earlier that peripheral and CNS infections were detected in transgenic mice expressing human PrP129M or PrP129V. Here we will present an update on this project, including evidence for strain dependence and influence of cervid PrP polymorphisms on CWD zoonosis as well as the characteristics of experimental human CWD prions.

 

PRION 2016 TOKYO

 

In Conjunction with Asia Pacific Prion Symposium 2016

 

PRION 2016 Tokyo

 

Prion 2016

 


 

Cervid to human prion transmission

 

Kong, Qingzhong

 

Case Western Reserve University, Cleveland, OH, United States

 

Abstract

 

Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that:

 

(1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues;

 

(2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence;

 

(3) Reliable essays can be established to detect CWD infection in humans;and

 

(4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches.

 

Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of "humanized" Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental "human CWD" samples will also be generated for Aim 3.

 

Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1.

 

Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental "human CWD" samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions.

 

Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans.

 

Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.

 


 


 


 

LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$

 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***

 


 

PRION 2015 CONFERENCE FT. COLLINS CWD RISK FACTORS TO HUMANS

 

*** LATE-BREAKING ABSTRACTS PRION 2015 CONFERENCE ***

 

O18

 

Zoonotic Potential of CWD Prions

 

Liuting Qing1, Ignazio Cali1,2, Jue Yuan1, Shenghai Huang3, Diane Kofskey1, Pierluigi Gambetti1, Wenquan Zou1, Qingzhong Kong1 1Case Western Reserve University, Cleveland, Ohio, USA, 2Second University of Naples, Naples, Italy, 3Encore Health Resources, Houston, Texas, USA

 

*** These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.

 

==================

 

***These results indicate that the CWD prion has the potential to infect human CNS and peripheral lymphoid tissues and that there might be asymptomatic human carriers of CWD infection.***

 

==================

 

P.105: RT-QuIC models trans-species prion transmission

 

Kristen Davenport, Davin Henderson, Candace Mathiason, and Edward Hoover Prion Research Center; Colorado State University; Fort Collins, CO USA

 

Conversely, FSE maintained sufficient BSE characteristics to more efficiently convert bovine rPrP than feline rPrP. Additionally, human rPrP was competent for conversion by CWD and fCWD.

 

***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.

 

================

 

***This insinuates that, at the level of protein:protein interactions, the barrier preventing transmission of CWD to humans is less robust than previously estimated.***

 

================

 


 

*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***

 

Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014

 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.

 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.

 


 


 

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***

 


 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

***********CJD REPORT 1994 increased risk for consumption of veal and venison and lamb***********

 

CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994

 

Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss)

 

These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...

 

Table 9 presents the results of an analysis of these data.

 

There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).

 

Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.

 

There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).

 

The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).

 

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

 

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

 

snip...

 

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

 

snip...

 

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

 

snip...

 

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

 

snip...see full report ;

 


 

CJD9/10022

 

October 1994

 

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane BerksWell Coventry CV7 7BZ

 

Dear Mr Elmhirst,

 

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

 

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

 

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

 

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

 

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

 

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.

 


 

Monday, May 02, 2016

 

*** Zoonotic Potential of CWD Prions: An Update Prion 2016 Tokyo ***

 


 

*** PRION 2014 CONFERENCE CHRONIC WASTING DISEASE CWD

 


 

*** PPo3-7: Prion Transmission from Cervids to Humans is Strain-dependent

 

*** Here we report that a human prion strain that had adopted the cervid prion protein (PrP) sequence through passage in cervidized transgenic mice efficiently infected transgenic mice expressing human PrP,

 

*** indicating that the species barrier from cervid to humans is prion strain-dependent and humans can be vulnerable to novel cervid prion strains.

 

PPo2-27:

 

Generation of a Novel form of Human PrPSc by Inter-species Transmission of Cervid Prions

 

*** Our findings suggest that CWD prions have the capability to infect humans, and that this ability depends on CWD strain adaptation, implying that the risk for human health progressively increases with the spread of CWD among cervids.

 

PPo2-7:

 

Biochemical and Biophysical Characterization of Different CWD Isolates

 

*** The data presented here substantiate and expand previous reports on the existence of different CWD strains.

 


 

Envt.07:

 

Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free Ranging White-Tailed Deer Infected with Chronic Wasting Disease

 

***The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.

 


 

>>>CHRONIC WASTING DISEASE , THERE WAS NO ABSOLUTE BARRIER TO CONVERSION OF THE HUMAN PRION PROTEIN<<<

 

*** PRICE OF CWD TSE PRION POKER GOES UP 2014 ***

 

Transmissible Spongiform Encephalopathy TSE PRION update January 2, 2014

 

Wednesday, January 01, 2014

 

Molecular Barriers to Zoonotic Transmission of Prions

 

*** chronic wasting disease, there was no absolute barrier to conversion of the human prion protein.

 

*** Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype.

 


 


 

Envt.07:

 

Pathological Prion Protein (PrPTSE) in Skeletal Muscles of Farmed and Free Ranging White-Tailed Deer Infected with Chronic Wasting Disease

 

***The presence and seeding activity of PrPTSE in skeletal muscle from CWD-infected cervids suggests prevention of such tissue in the human diet as a precautionary measure for food safety, pending on further clarification of whether CWD may be transmissible to humans.

 

Yet, it has to be noted that our assessments of PrPTSE levels in skeletal muscles were based on findings in presumably pre- or subclinically infected animals. Therefore, the concentration of PrPTSE in skeletal muscles of WTD with clinically manifest CWD may possibly exceed our estimate which refers to clinically inconspicuous animals that are more likely to enter the human food chain. Our tissue blot findings in skeletal muscles from CWD-infected WTD would be consistent with an anterograde spread of CWD prions via motor nerve fibres to muscle tissue (figure 4A). Similar neural spreading pathways of muscle infection were previously found in hamsters orally challenged with scrapie [28] and suggested by the detection of PrPTSE in muscle fibres and muscle-associated nerve fascicles of clinically-ill non-human primates challenged with BSE prions [29]. Whether the absence of detectable PrPTSE in myofibers observed in our study is a specific feature of CWD in WTD, or was due to a pre- or subclinical stage of infection in the examined animals, remains to be established. In any case, our observations support previous findings suggesting the precautionary prevention of muscle tissue from CWD-infected WTD in the human diet, and highlight the need to comprehensively elucidate of whether CWD may be transmissible to humans. While the understanding of TSEs in cervids has made substantial progress during the past few years, the assessment and management of risks possibly emanating from prions in skeletal muscles of CWD-infected cervids requires further research.

 


 


 

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease Rachel C. Angers1,*, Shawn R. Browning1,*,†, Tanya S. Seward2, Christina J. Sigurdson4,‡, Michael W. Miller5, Edward A. Hoover4, Glenn C. Telling1,2,3,§ + Author Affiliations

 

1 Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA. 2 Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA. 3 Department of Neurology, University of Kentucky, Lexington, KY 40536, USA. 4 Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA. 5 Colorado Division of Wildlife, Wildlife Research Center, Fort Collins, CO 80526, USA. ↵§ To whom correspondence should be addressed. E-mail: gtell2@uky.edu ↵* These authors contributed equally to this work.

 

↵† Present address: Department of Infectology, Scripps Research Institute, 5353 Parkside Drive, RF-2, Jupiter, FL 33458, USA.

 

↵‡ Present address: Institute of Neuropathology, University of Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland.

 

Abstract The emergence of chronic wasting disease (CWD) in deer and elk in an increasingly wide geographic area, as well as the interspecies transmission of bovine spongiform encephalopathy to humans in the form of variant Creutzfeldt Jakob disease, have raised concerns about the zoonotic potential of CWD. Because meat consumption is the most likely means of exposure, it is important to determine whether skeletal muscle of diseased cervids contains prion infectivity. Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.

 


 

Exotic Meats USA Announces Urgent Statewide Recall of Elk Tenderloin Because It May Contain Meat Derived From An Elk Confirmed To Have Chronic Wasting Disease

 

Contact: Exotic Meats USA 1-800-680-4375

 

FOR IMMEDIATE RELEASE -- February 9, 2009 -- Exotic Meats USA of San Antonio, TX is initiating a voluntary recall of Elk Tenderloin because it may contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD). The meat with production dates of December 29, 30 and 31, 2008 was purchased from Sierra Meat Company in Reno, NV. The infected elk came from Elk Farm LLC in Pine Island, MN and was among animals slaughtered and processed at USDA facility Noah’s Ark Processors LLC.

 

Chronic Wasting Disease (CWD) is a fatal brain and nervous system disease found in elk and deer. The disease is caused by an abnormally shaped protein called a prion, which can damage the brain and nerves of animals in the deer family. Currently, it is believed that the prion responsible for causing CWD in deer and elk is not capable of infecting humans who eat deer or elk contaminated with the prion, but the observation of animal-to-human transmission of other prion-mediated diseases, such as bovine spongiform encephalopathy (BSE), has raised a theoretical concern regarding the transmission of CWD from deer or elk to humans. At the present time, FDA believes the risk of becoming ill from eating CWD-positive elk or deer meat is remote. However, FDA strongly advises consumers to return the product to the place of purchase, rather than disposing of it themselves, due to environmental concerns.

 

Exotic Meats USA purchased 1 case of Elk Tenderloins weighing 16.9 lbs. The Elk Tenderloin was sold from January 16 – 27, 2009. The Elk Tenderloins was packaged in individual vacuum packs weighing approximately 3 pounds each. A total of six packs of the Elk Tenderloins were sold to the public at the Exotic Meats USA retail store. Consumers who still have the Elk Tenderloins should return the product to Exotic Meats USA at 1003 NE Loop 410, San Antonio, TX 78209. Customers with concerns or questions about the Voluntary Elk Recall can call 1-800-680-4375. The safety of our customer has always been and always will be our number one priority.

 

Exotic Meats USA requests that for those customers who have products with the production dates in question, do not consume or sell them and return them to the point of purchase. Customers should return the product to the vendor. The vendor should return it to the distributor and the distributor should work with the state to decide upon how best to dispose. If the consumer is disposing of the product he/she should consult with the local state EPA office.

 

#

 


 

COLORADO: Farmer's market meat recalled after testing positive for CWD

 

24.dec.08 9News.com Jeffrey Wolf

 

Elk meat that was sold at a farmer's market is being recalled because tests show it was infected with chronic wasting disease. The Boulder County Health Department and Colorado Department of Public Health and Environment issued the recall Wednesday after the meat was sold at the Boulder County Fairgrounds on Dec. 13. Although there isn't any human health risk connected with CWD, the recalled was issued as a precaution. About 15 elk were bought from a commercial ranch in Colorado in early December and processed at a licensed plant. All 15 were tested for CWD and one came up positive. The labeling on the product would have the following information: *Seller: High Wire Ranch *The type of cut: "chuck roast," "arm roast," "flat iron," "ribeye steak," "New York steak," "tenderloin," "sirloin tip roast," "medallions" or "ground meat." *Processor: Cedaredge Processing *The USDA triangle containing the number "34645" People with questions about this meat can contact John Pape, epidemiologist at the Colorado Department of Public Health and Environment at 303-692-2628.

 


 

COULD NOT FIND any warning or recalls on these two sites confirming their recall of CWD infected meat. ...TSS

 


 


 

Wednesday, April 06, 2011

 

Presence and Seeding Activity of Pathological Prion Protein (PrPTSE) in Skeletal Muscles of White-Tailed Deer Infected with Chronic Wasting Disease

 


 

Prion Infectivity in Fat of Deer with Chronic Wasting Disease

 

Brent Race,# Kimberly Meade-White,# Richard Race, and Bruce Chesebro* Rocky Mountain Laboratories, 903 South 4th Street, Hamilton, Montana 59840

 

Received 2 June 2009/ Accepted 24 June 2009

 

ABSTRACT Top ABSTRACT TEXT REFERENCES

 

Chronic wasting disease (CWD) is a neurodegenerative prion disease of cervids. Some animal prion diseases, such as bovine spongiform encephalopathy, can infect humans; however, human susceptibility to CWD is unknown. In ruminants, prion infectivity is found in central nervous system and lymphoid tissues, with smaller amounts in intestine and muscle. In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.

 

snip...

 

The highest risk of human contact with CWD might be through exposure to high-titer CNS tissue through accidental skin cuts or corneal contact at the time of harvest and butchering. However, the likelihood of a human consuming fat infected with a low titer of the CWD agent is much higher. It is impossible to remove all the fat present within muscle tissue, and fat consumption is inevitable when eating meat. Of additional concern is the fact that meat from an individual deer harvested by a hunter is typically consumed over multiple meals by the same group of people. These individuals would thus have multiple exposures to the CWD agent over time, which might increase the chance for transfer of infection.

 

In the Rocky Mountain region of North America, wild deer are subject to predation by wolves, coyotes, bears, and mountain lions. Although canines such as wolves and coyotes are not known to be susceptible to prion diseases, felines definitely are susceptible to BSE (9) and might also be infected by the CWD agent. Deer infected with the CWD agent are more likely to be killed by predators such as mountain lions (11). Peripheral tissues, including lymph nodes, muscle, and fat, which harbor prion infectivity are more accessible for consumption than CNS tissue, which has the highest level of infectivity late in disease. Therefore, infectivity in these peripheral tissues may be important in potential cross-species CWD transmissions in the wild.

 

The present finding of CWD infectivity in deer fat tissue raises the possibility that prion infectivity might also be found in fat tissue of other infected ruminants, such as sheep and cattle, whose fat and muscle tissues are more widely distributed in both the human and domestic-animal food chains. Although the infectivity in fat tissues is low compared to that in the CNS, there may be significant differences among species and between prion strains. Two fat samples from BSE agent-infected cattle were reported to be negative by bioassay in nontransgenic RIII mice (3, 6). However, RIII mice are 10,000-fold-less sensitive to BSE agent infection than transgenic mice expressing bovine PrP (4). It would be prudent to carry out additional infectivity assays on fat from BSE agent-infected cattle and scrapie agent-infected sheep using appropriate transgenic mice or homologous species to determine the risk from these sources.

 


 

0C7.04

 

North American Cervids Harbor Two Distinct CWD Strains

 

Authors

 

Angers, R. Seward, T, Napier, D., Browning, S., Miller, M., Balachandran A., McKenzie, D., Hoover, E., Telling, G. 'University of Kentucky; Colorado Division of Wildlife, Canadian Food Inspection Agency; University Of Wisconsin; Colorado State University.

 

Content

 

Despite the increasing geographic distribution and host range of CWD, little is known about the prion strain(s) responsible for distinct outbreaks of the disease. To address this we inoculated CWD-susceptible Tg(CerPrP)1536+/· mice with 29 individual prion samples from various geographic locations in North America. Upon serial passage, intrastudy incubation periods consistently diverged and clustered into two main groups with means around 210 and 290 days, with corresponding differences in neuropathology. Prion strain designations were utilized to distinguish between the two groups: Type I CWD mice succumbed to disease in the 200 day range and displayed a symmetrical pattern of vacuolation and PrPSc deposition, whereas Type II CWD mice succumbed to disease near 300 days and displayed a strikingly different pattern characterized by large local accumulations of florid plaques distributed asymmetrically. Type II CWD bears a striking resemblance to unstable parental scrapie strains such as 87A which give rise to stable, short incubation period strains such as ME7 under certain passage conditions. In agreement, the only groups of CWD-inoculated mice with unwavering incubation periods were those with Type I CWD. Additionally, following endpoint titration of a CWD sample, Type I CWD could be recovered only at the lowest dilution tested (10-1), whereas Type II CWD was detected in mice inoculated with all dilutions resulting in disease. Although strain properties are believed to be encoded in the tertiary structure of the infectious prion protein, we found no biochemical differences between Type I and Type II CWD. Our data confirm the co·existence of two distinct prion strains in CWD-infected cervids and suggest that Type II CWD is the parent strain of Type I CWD.

 

see page 29, and see other CWD studies ;

 


 

Sunday, November 23, 2008

 

PRION October 8th - 10th 2008 Book of Abstracts

 


 

ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD

 

Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

 

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.

 


 

*** Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery ***

 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. Laboratory of Central Nervous System Studies, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892.

 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them.

 


 

Wednesday, September 07, 2016

 

Michigan Launches an investigation into the Detroit Medical Center dirty, broken and missing surgical instruments, what about the CJD TSE PRION iatrogenic threat past and present therefrom?

 


 

Tuesday, July 05, 2016

 

Michigan DNR announces expansion of Chronic Wasting Disease Core Area and Management Zone

 


 

Thursday, August 18, 2016

 

*** PROCEEDINGS ONE HUNDRED AND Nineteenth ANNUAL MEETING of the USAHA BSE, CWD, SCRAPIE, PORCINE TSE PRION October 22 28, 2015 ***

 


 

Tuesday, August 9, 2016

 

*** Concurrence with OIE Risk Designations for Bovine Spongiform Encephalopathy [Docket No. APHIS-2015-0055]

 


 

Saturday, July 23, 2016

 

*** BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016

 


 

Tuesday, July 26, 2016

 

*** Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016

 


 

Saturday, July 16, 2016

 

*** Importation of Sheep, Goats, and Certain Other Ruminants [Docket No. APHIS-2009-0095]RIN 0579-AD10

 

WITH great disgust and concern, I report to you that the OIE, USDA, APHIS, are working to further legalize the trading of Transmissible Spongiform Encephalopathy TSE Pion disease around the globe.

 

THIS is absolutely insane. it’s USDA INC.

 


 

Monday, June 20, 2016

 

*** Specified Risk Materials SRMs BSE TSE Prion Program ***

 


 

Thursday, October 22, 2015

 

*** Former Ag Secretary Ann Veneman talks women in agriculture and we talk mad cow disease USDA and what really happened those mad cows in Texas ***

 


 

Tuesday, July 26, 2016

 

*** Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016

 


 

Tuesday, September 06, 2016

 

*** A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation

 


 

Saturday, July 23, 2016

 

*** BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016

 


 

Tuesday, August 9, 2016

 

$$$ Concurrence with OIE Risk Designations for Bovine Spongiform Encephalopathy [Docket No. APHIS-2015-0055] $$$

 


 

*** Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle ***

 

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

 

snip...

 

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...

 


 


 


 

In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

 

3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

Thursday, August 04, 2016

 

MEETING ON THE FEASIBILITY OF CARRYING OUT EPIDEMIOLOGICAL STUDIES ON CREUTZFELDT JAKOB DISEASE 1978 THE SCRAPIE FILES IN CONFIDENCE CONFIDENTIAL SCJD

 


 

snip...

 


 


 


 


 


 


 

1979

 

SILENCE ON CJD AND SCRAPIE

 

1980

 

SILENCE ON CJD AND SCRAPIE

 

*** 1981 NOVEMBER

 


 


 

snip...see full text ;

 

Thursday, August 04, 2016

 

MEETING ON THE FEASIBILITY OF CARRYING OUT EPIDEMIOLOGICAL STUDIES ON CREUTZFELDT JAKOB DISEASE 1978 THE SCRAPIE FILES IN CONFIDENCE CONFIDENTIAL SCJD

 


 

Tuesday, July 12, 2016

 

Chronic Wasting Disease CWD, Scrapie, Bovine Spongiform Encephalopathy BSE, TSE, Prion Zoonosis Science History see history of NIH may destroy human brain collection

 


 

Saturday, December 12, 2015

 

CREUTZFELDT JAKOB DISEASE CJD TSE PRION REPORT DECEMBER 14, 2015

 


 

Monday, August 22, 2016

 

CREUTZFELDT JAKOB DISEASE USA 2015 SPORADIC CJD TOTAL FIGURES REACHES HIGHEST ANNUAL COUNT TO DATE AT 239 CONFIRMED CASES

 


 

 

Terry S. Singeltary Sr.