Monday, October 1, 2018

Review: Update on Classical and Atypical Scrapie in Sheep and Goats

Review: Update on Classical and Atypical Scrapie in Sheep and Goats

Justin J. Greenlee1

Veterinary Pathology 1-11 ª The Author(s) 2018 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/0300985818794247 journals.sagepub.com/home/vet

Abstract

Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) or prion disease of sheep and goats. Scrapie is a protein misfolding disease where the normal prion protein (PrPC) misfolds into a pathogenic form (PrPSc) that is highly resistant to enzymatic breakdown within the cell and accumulates, eventually leading to neurodegeneration. The amino acid sequence of the prion protein and tissue distribution of PrPSc within affected hosts have a major role in determining susceptibility to and potential environmental contamination with the scrapie agent. Many countries have genotype-based eradication programs that emphasize using rams that express arginine at codon 171 in the prion protein, which is associated with resistance to the classical scrapie agent. In classical scrapie, accumulation of PrPSc within lymphoid and other tissues facilitates environmental contamination and spread of the disease within flocks. A major distinction can be made between classical scrapie strains that are readily spread within populations of susceptible sheep and goats and atypical (Nor-98) scrapie that has unique molecular and phenotype characteristics and is thought to occur spontaneously in older sheep or goats. This review provides an overview of classical and atypical scrapie with consideration of potential transmission of classical scrapie to other mammalian hosts.

Keywords

goats, prion diseases, prion protein, PRNP, PrPSc, review, scrapie, sheep, transmissible spongiform encephalopathies

snip...

Strains

TSE agents can exist in multiple strains that may exhibit different disease phenotypes and pathogenesis.30,143 Strains may be differentiated by clinical signs,126 incubation periods and lesion profiles in mouse models,23,51,52 cellular and neuroanatomical deposition of PrPSc, 24,61 molecular profile on western blot (the apparent molecular mass18 and/or glycoform ratios154 of PrPSc fragments),18 or reactivity to antibodies binding to different regions of PrPSc.

101 Strain properties are maintained through conformational differences in PrPSc as there are no amino acid sequence differences between PrPC and PrPSc. 19,104 The hypothesis that strains arise from differences in protein structure127 is supported by the reaction of different strain isolates to conformational antibodies135 and stability assays.163 It is not known how new strains arise, but it could be due to inherent conformational flexibility of the prion protein, presence of PRNP polymorphisms within a host species, or interspecies transmission events.115 Many scrapie strains are difficult to differentiate by western blot114 but can be differentiated by in-depth analysis of immunoreactivity patterns in multiple brain regions.61,113 A rarely identified sheep scrapie isolate referred to as CH1641 is of note because of an appearance on western blot with some similarities to BSE,80 such as a lower apparent molecular mass of the unglycosylated fragment.154 With the use of a panel of antibodies, CH1641 can be differentiated from BSE by immunohistochemistry85 or western blot.11,12,154 Furthermore, BSE readily transmits to conventional mice,26 whereas CH1641 does not.49 The most important strain designation to recognize in scrapie is between classical scrapie strains (described above) and the more recently described atypical scrapie. 

Atypical Scrapie

Atypical (Nor98) scrapie was first detected in Norway in 1998,15,16 but retrospective studies indicate that this phenotype has been present since at least the 1980s.25,166 Atypical scrapie is different from classical scrapie in clinical presentation, molecular characteristics and distribution of PrPSc within infected sheep, genotypes affected, and epidemiology. Atypical scrapie has been identified throughout Europe,9,40,41,47,53 North America,106,111 New Zealand,91 and Australia.34 The worldwide distribution with similar incidence rates where detected supports a separate etiology from classical scrapie47 and that it is spontaneous109 or transmits very poorly under natural conditions.46 Thus, atypical scrapie is recognized as a separate, nonreportable disease by the World Organization for Animal Health (OIE).

snip...

PRNP genotype is a major factor in atypical scrapie cases with polymorphisms at codons 141 (F, phenylalanine) and 154 (H) being highly associated with identified cases. Sheep in the original report carried at least 1 AHQ allele.16 Atypical scrapie has been transmitted experimentally to AHQ sheep by the intracranial145 and oral146 routes. An increased risk of atypical scrapie has also been identified in sheep with the AF141RQ haplotype.137 Atypical scrapie does experimentally transmit to sheep with the AL141RQ haplotype but with very long incubation periods without clinical signs.123 Furthermore, sheep with the ARR haplotype, which confers resistance to classical scrapie and is the cornerstone of genotype-based eradication programs, do not appear to be protected against developing atypical scrapie.41,137

Atypical scrapie has also been reported in goats,103,142 where the molecular profile on western blot is similar to atypical scrapie in sheep, but the distribution of lesions within the brain is more rostral (thalamus and midbrain) than atypical scrapie of sheep.142 Similar to sheep with atypical scrapie, histidine substitution at PRNP codon 154 is a risk factor for atypical scrapie in goats,32 and PrPSc has not been demonstrated in the lymphoid tissues of affected goats.142

Interspecies Transmission

Experimental interspecies transmission of prion agents provides valuable information about potential host ranges. Unsuccessful attempts at interspecies transmission led to the concept of a species barrier, an influence on prion transmission due to mismatches between host and recipient prion amino acid sequence and the resulting structures and folding.17,31,78,79,112,140,162 Species barrier can manifest as complete lack of susceptibility, incomplete attack rates, or prolonged incubation times. Interspecies transmission studies are done to fully assess potential risks to animal health, and potential risks to human health can be studied through the use of transgenic mice expressing human PRNP.

Classical scrapie has been experimentally transmitted to numerous omnivorous species after intracranial inoculation, including European bank voles (Myodes glareolus),42,128 meadow voles (Microtus pennsylvanicus),28 raccoons,72,74 and pigs.66 With the exception of European bank voles, which express PRNP that is permissive to many donor strains,165 these studies suggest a substantial species barrier to infection by natural routes.

One hypothesis for the origin of BSE in the United Kingdom was that it resulted from the passage of a scrapie-like disease into the cattle population168 through the feeding of ruminant derived meat and bone meal (MBM). Experimental studies performed in the United States and United Kingdom demonstrated that classical scrapie does not transmit to cattle by the oral route of inoculation,37,97 and successful transmission after intracranial inoculation results in a disease that is distinguishable from BSE by clinical signs, the molecular profile of PrPSc, and PrPSc deposition patterns in brain sections.21,38,39,94 These studies, however, are far from exhaustive and leave untested the possibilities that prion protein genotype of the donor or transmission of another prion agent such as CH1641 scrapie or atypical scrapie to cattle could have been the origin of BSE.

The agent of BSE has been demonstrated to transmit to other species, including humans.26,141 Small ruminants were likely exposed to the same sources of BSE infectivity as cattle, creating concern that the BSE agent could be misdiagnosed as scrapie90 and represent an additional risk to human health. Experimental studies demonstrate that the agent of BSE transmits to sheep, results in a wide distribution of PrPSc in peripheral tissues and brain,14,50,105 and can transmit horizontally between sheep.13 Most cases of classical sheep scrapie appear to be invariant in western blot profile that is differentiable from BSE,81 but BSE in sheep has some similarities to the CH1641 strain of scrapie (described above). Despite significant surveillance efforts, no natural cases of BSE have been described in sheep, but 2 natural cases of BSE have been identified in goats.44,88,151 One hypothesis as to why these cases have only been identified in goats is that goats are more intensively managed and had higher exposure to contaminated feed concentrates,151 similar to the explanation of why the incidence of BSE is higher in dairy herds relative to beef herds.167

Chronic wasting disease (CWD) is a naturally occurring prion disease of cervids with strong similarities to classical scrapie, including widespread accumulation of PrPSc in the lymphoid and nervous tissues of affected animals.114,144 Chronic wasting disease was first identified in captive cervids, and one hypothesis is that it originated as a cross-species transmission of the classical sheep scrapie agent.170 Experimental studies in white-tailed deer lend support to this hypothesis: inoculation of white-tailed deer results in a 100% attack rate after either intracranial or oronasal inoculation.68 Furthermore, PrPSc is distributed throughout the lymphoid tissues, and samples collected from brainstem have a CWD-like western blot pattern.68 The classical scrapie agent was transmitted to Rocky Mountain elk (Cervus elaphus nelsoni) after experimental intracranial inoculation; however, the results suggest elk are not likely to be susceptible to the classical scrapie agent by more natural routes of exposure. After intracranial inoculation with the classical sheep scrapie agent, only 3 of 6 animals developed neurologic signs, and accumulation of PrPSc was limited to the central nervous system without spreading to lymphoid tissues.73

***> Continued research is needed to clarify the potential risks of the scrapie agent to human health. There is no evidence from epidemiologic studies that the scrapie agent has ever transmitted to humans,22,159 and studies using transgenic mice that express wild-type levels of human PRNP have failed to demonstrate transmission of the classical58 or atypical164,171 scrapie agents. However, the classical scrapie agent has transmitted to cynomolgus macaques (with a slightly different prion protein amino acid sequence than humans)33 and mice overexpressing human PRNP.29 Western blot analysis of brain tissues from these studies demonstrates a molecular profile similar to sporadic CJD, suggesting that ongoing surveillance for potential interspecies transmission events and further studies to clarify potential risks of scrapie transmission to humans are critical.

Acknowledgements

snip...see full text; 



***> Thus, atypical scrapie is recognized as a separate, nonreportable disease by the World Organization for Animal Health (OIE).


O3 Experimental studies on prion transmission barrier and TSE pathogenesis in large animals 

 
Rosa Bolea(1), Acín C(1)Marín B(1), Hedman C(1), Raksa H(1), Barrio T(1), Otero A(1), LópezPérez O(1), Monleón E(1),Martín-Burriel(1), Monzón M(1), Garza MC(1), Filali H(1),Pitarch JL(1), Garcés M(1), Betancor M(1), GuijarroIM(1), GarcíaM(1), Moreno B(1),Vargas A(1), Vidal E(2), Pumarola M(2), Castilla J(3), Andréoletti O(4), Espinosa JC(5), Torres JM(5), Badiola JJ(1). 

1Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, VeterinaryFaculty, Universidad de Zaragoza; Zaragoza,Spain.2 RTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB) 3 4 INRA, ÉcoleVétérinaire, Toulouse, France.5CIC bioGUNE, Prion researchlab, Derio, Spain CISA- INIA, Valdeolmos, Madrid 28130, Spain. 

Experimental transmission of Transmissible Spongiform Encephalopathies (TSE) has been understood and related with several factors that could modify the natural development of these diseases. In fact, the behaviour of the natural disease does not match exactly in each animal, being modified by parameters such as the age at infection, the genotype, the breed or the causative strain. Moreover, different TSE strains can target different animal species or tissues, what complicate the prediction of its transmissibility when is tested in a different species of the origin source. The aim of the experimental studies in large animals is to homogenize all those factors, trying to minimize as much as possible variations between individuals. These effects can be flattened by experimental transmission in mice, in which a specific strain can be selected after several passages. With this objective, several experimental studies in large animals have been developed by the presenter research team. 

Classical scrapie agent has been inoculated in cow, with the aim of demonstrate the resistance or susceptibility of this species to the first well known TSE; Atypical scrapie has been inoculated in sheep (using several routes of infection), cow and pig, with the objective of evaluating the potential pathogenicity of this strain; Classical Bovine Spongiform Encephalopathy (BSE) has been inoculated in goats aiming to demonstrate if the genetic background of this species could protect against this strain; goat BSE and sheep BSE have been inoculated in goats and pigs respectively to evaluate the effect of species barrier; and finally atypical BSE has been inoculated in cattle to assess the transmissibility properties of this newly introduced strain. 

Once the experiments have been carried out on large animal species, a collection of samples from animals studied were inoculated in different types of tg mice overexpressing PrPcin order to study the infectivity of the tissues, and also were studied using PMCA. 

In summary, the parameters that have been controlled are the species, the strain, the route of inoculation, the time at infection, the genotype, the age, and the environmental conditions. 

To date, 

***> eleven of the atypical scrapie intracerebrally inoculated sheep have succumbed to atypical scrapie disease; 

***> six pigs to sheep BSE; 

***> one cow to classical scrapie; 

***> nine goats to goat BSE and 

***> five goats to classical BSE. 

***> PrPSC has been demonstrated in all cases by immunohistochemistry and western blot. 


O9 Permeability of the bovine transmission barrier to Atypical/Nor98 scrapie 

Huor A. (1), Vidal E.(2), Espinosa JC (3), Lacroux C.(1), Cassard H.(1), Douet JY.(1), Lugan S.(1), Aron N.(1), Tillier C.(1), Bolea R.(4), Benestad SL.(5), Orge L.(6), Torres JM.(3), and Andréoletti O(1) 


1 UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles 31076 Toulouse, France 2 RTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain 3 CISA- INIA, Valdeolmos, Madrid 28130, Spain 4 University of Zaragoza , Facultad de Veterinaria, C/ Miguel Servet 177 Zaragoza, Spain 5 Norwegian Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway 6Laboratório Nacional de Investigação Veterinária, Estrada de Benfica 701, 1549-011 Lisboa, Portugal. 

Atypical/Nor98 Scrapie has been identified in many countries, including Australia and New Zealand. In the EU small ruminants‘ population, its prevalence was estimated to range between 5 to 8 positive small ruminants per 10,000 tested per year. 

The zoonotic potential and the risk that atypical scrapie might represent for other farmed animal species remains unknown. 

In this study we investigated the capacity of a panel of Atypical scrapie isolates (n= 8 issued four different countries) to propagate in bovine PrP expressing mice (tgBov). 

The inoculation in tgBov of all the selected isolates resulted in Prion propagation. Surprisingly the properties of the TSE agents recovered in tgBov were dramatically different from those present in the original isolates. Their in-depth phenotypic characterization (bioassay in various reporter models, PrPres biochemistry) indicated that atypical scrapie passage through the cattle transmission barrier resulted, in the majority of the cases, in the emergence of classical BSE. Investigations carried-out using highly sensitive in vitro amplification of Prion (PMCA) confirmed the absence of any detectable classical BSE prions in the original isolates. 

***> Our findings suggest that cattle exposure to atypical scrapie could be responsible of the occurrence of classical BSE in this species. 

***> These results also raise some concerns about the current and future changes in the protection measures that were implemented to mitigate animal and human exposure to TSE agents. 


 ===== 


P57 A spontaneous misfolding-associated polymorphism in ovine PRNP(M112I) renders ShTg mice highly susceptible to atypical scrapie 

Vidal E (1), Sánchez-Martín M (2), Ordóñez M (1), Eraña H (3), Charco JM (3) Méndez L (2), Pumarola M (4) and Castilla J (3,5). 

(1) Centre de Recerca en Sanitat Animal (CReSA)-Institut de Recerca i Tecnologia Agroalimentáries (IRTA), Campus de UAB, Barcelona, Catalonia, Spain (2)Transgenic Facility. Department of Medicine. University of Salamanca,Salamanca, Spain (3) CIC bioGUNE, Parque tecnológico de Bizkaia, Derio, Bizkaia, Spain (4) Departament de Medicina i Cirurgia Animals, Facultat de Veterinária UAB, Barcelona, Catalonia, Spain (5) IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, Spain. 

Spontaneous misfolding of human PrP is a long-known event leading among other disorders to sporadic CJD, the most prevalent prion disease in human beings. However, little is known about pathogenesis of sporadic prion diseases in other mammalians such as sheep. The high cost associated to ruminant housing and the scarcity of sporadic TSE cases makes necessary to develop reliable mouse models of these diseases not only to study the pathogenesis but also to test therapeutic approaches. 

In vitro amplification experiments using recombinant PrP from different species as substrates show that certain amino acid changes render the PrPC highly susceptible to spontaneous misfolding in unseeded amplification reactions. These changes, when overexpressed in transgenic mice, cause a spontaneous and transmissible prion disease. 

Certain, naturally occurring polymorphisms were identified in the equivalent positions in the PRNP of sheep. In particular, polymorphism M112I in the ovine PRNP gene showed enhanced spontaneous misfolding susceptibility in vitro. Thus, as previously done for bank vole and mouse, our objective is to determine if a transgenic mouse model over-expressing this polymorphic PrPC will give rise to a spontaneous and transmissible ovine prion disease. Brains of preclinical and clinical transgenic mice will be used to produce inocula that will be tested for TSE infectivity in known ovine and human transgenic mouse models. 

Subsequently, several mouse lines have been generated, on a mouse-PRNP knock out background, with different sheep (ARQ) M112I PrPC expression levels. Two candidate lines have been selected with expression levels of 1,5x and 3x of the PrPC transgene (compared to sheep) in homozigosity. 

Since in other transgenic models with this substitution the generated spontaneous prions were atypicallike, we challenged our model with ovine classical and atypical prions to determine its susceptibility. 

***>Even though no conclusive indication of spontaneous prion disease has been observed so far in the two lines under study, inoculation with atypical scrapie produced conspicuous neurological clinical signs, brain spongiosis and PrPres deposits as early as 140 days post inoculation (dpi), with a 100% attack rate (mean incubation period of 225 dpi) while animals inoculated with classical scrapie remain free of disease at >340 dpi. Indicating that the M112I substitution is highly permissive to atypical ovine prion misfolding. 

This study has been funded by MINECO research project reference AGL2013-46756-P. 


===== 


 P110 Using mass spectrometry to determine the relative susceptibility of PrP polymorphisms to atypical scrapie 

Christopher J. Silva (1), Melissa L. Erickson-Beltran (1), Inmaculada Martín-Burriel (2,3), Juan José Badiola (3), Jesús R. Requena (4), Rosa Bolea (3) 

1. Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, California 94710, United States of America. 2. LAGENBIO, Laboratorio de Genética Bioquímica, Facultad de Veterinaria, IA2 Universidad de Zaragoza, 50013, Zaragoza. 3. Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza, 50013, Zaragoza, Spain. 4. CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain. Correspondence to: Christopher J. Silva; USDA, ARS, WRRC 800 Buchanan Street Albany California 94710, USA. Phone 510.559.6135. FAX 510.559.6429. email:christopher.silva@ars.usda.gov

A novel form of scrapie was described in 1998 and referred to as Nor98 for the country of origin and date of its discovery. Since then it has been found in numerous countries, including New Zealand and Australia, and has been renamed atypical scrapie. Unlike classical scrapie, the epidemiology of this sheep prion (PrPSc) disease is consistent with a sporadic origin. Even though it may arise spontaneously, atypical scrapie can be experimentally transmitted to other sheep. Atypical scrapie is associated with specific PrPC polymorphisms that are different from those associated with classical scrapie. We used a mass spectrometry-based method to determine the relative amount of each PrP polymorphism present in a sample from a heterozygous animal. The total amount and relative amounts of each PrP polymorphism present in PrPSc and PrPC were determined. Each PrP sample was isolated and digested with chymotrypsin to yield a set of characteristic peptides spanning relevant polymorphisms at positions 136, 141, 154, 171 and 172 of sheep PrPC. 15N-labeled internal standards, derived from chymotrypsin digested 15N-labeled rPrP, were used to quantify PrP polymorphisms (ALRRY and ALHQY or ALRQD or AFRQY) present in heterozygous atypical scrapie-infected or uninfected control sheep. Full length and truncated (C1) natively expressed PrPC isolated from atypical scrapie-infected animals showed both PrP polymorphisms are produced in equal amounts. In addition, similar amounts of PrPC are present in either infected or uninfected animals. The amount of PrPSc isolated from infected heterozygotes was variable, but was composed of significant amounts of both PrP polymorphisms, including the ALRRY polymorphism which is highly resistant to classical scrapie. Atypical scrapie infection does not originate from sheep PrPC overexpression. Atypical scrapie prions replicate at comparable rates, in spite of polymorphisms at positions 141, 154, 171, or 172. 


=====> PRION CONFERENCE 2018


 


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research

Title: Passage of scrapie to deer results in a new phenotype upon return passage to sheep

Author item Greenlee, Justin item Kokemuller, Robyn item Moore, Sarah item West Greenlee, N Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A

Interpretive Summary:

Technical Abstract: 

Aims: We previously demonstrated that scrapie has a 100% attack rate in white-tailed deer after either intracranial or oral inoculation. 

Samples from deer that developed scrapie had two different western blot patterns: samples derived from cerebrum had a banding pattern similar to the scrapie inoculum, but samples from brainstem had a banding pattern similar to CWD. 

In contrast, transmission of CWD from white-tailed deer to sheep by the intracranial route has a low attack rate and to-date oronasal exposure has been unsuccessful. The purpose of this study was to determine if sheep are susceptible to oronasal exposure of the scrapie agent derived from white-tailed deer. 

Methods: At approximately 5 months of age, Suffolk sheep of various PRNP genotypes were challenged by the oronasal route with 10% brain homogenate derived from either the cerebrum or the brainstem of scrapie-affected deer. Genotypes represented in each inoculation group were VV136RR154QQ171 (n=2), AA136RR154QQ171 (n=2), and AV136RR154QR171 (n=1). After inoculation, sheep were observed daily for clinical signs. Upon development of clinical signs, sheep were killed with an overdose of pentobarbital sodium and necropsied. Tissue samples were tested for the presence of PrPSc by EIA, western blot, and immunohistochemistry (IHC). The No. 13-7 scrapie inoculum used for the deer has a mean incubation period of 20.1 months in sheep with the AA136RR154QQ171 genotype and 26.7 months in sheep with the VV136RR154QQ171 genotype. 

Results: Sheep inoculated oronasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum from the cerebrum that had a scrapie-like profile. The first sheep to develop clinical signs at approximately 29 months post inoculation had the VV136RR154QQ171 genotype. Eventually sheep of the AA136RR154QQ171 genotype developed clinical signs, but at a mean incubation of 52 months. At 62 months post-inoculation, none of the sheep inoculated with material from the deer brainstem have developed clinical disease. 

Conclusions: The No. 13-7 inoculum used in the original deer experiment readily infects white-tailed deer and sheep of various genotypes by the oronasal route. When inoculum is made from different brain regions of No 13-7 scrapie-infected deer from either cerebrum with a scrapie-like western blot pattern or brainstem with a CWD-like western blot pattern, sheep with the VV136RR154QQ171 genotype are the first to develop clinical signs. This is in contrast to the original No. 13-7 inoculum that has a faster incubation period in sheep with the AA136RR154QQ171 genotype. Similar to experiments conducted with CWD, sheep oronasally inoculated with brainstem material from deer with a CWD-like molecular profile have no evidence of disease after 62 months of incubation. 

While scrapie is not known to occur in free-ranging populations of white-tailed deer, experimental cases are difficult to differentiate from CWD. 

This work raises the potential concern that scrapie infected deer could serve as a confounding factor to scrapie eradication programs as scrapie from deer seems to be transmissible to sheep by the oronasal route.



Plos Singeltary et al

IBNC Tauopathy or TSE Prion disease, it appears, no one is sure Posted by flounder on 03 Jul 2015 at 16:53 GMT



 SHEEP AND BSE

PERSONAL AND CONFIDENTIAL

SHEEP AND BSE

A. The experimental transmission of BSE to sheep.

Studies have shown that the ''negative'' line NPU flock of Cheviots can be experimentally infected with BSE by intracerebral (ic) or oral challenge (the latter being equivalent to 0.5 gram of a pool of four cow brains from animals confirmed to have BSE).



RB264

BSE - TRANSMISSION STUDIES



snip...see;



SUNDAY, JUNE 3, 2018 

Clinical, pathological, and molecular features of classical and L-type atypical-BSE in goats



TUESDAY, AUGUST 07, 2018 

Passage of scrapie to deer results in a new phenotype upon return passage to sheep



Sunday, January 06, 2013

USDA TO PGC ONCE CAPTIVES ESCAPE

*** "it‘s no longer its business.”

http://chronic-wasting-disease.blogspot.com/2013/01/usda-to-pgc-once-captives-escape-its-no....html


COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep. 

IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989

http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

ALSO, one of the most, if not the most top TSE Prion God in Science today is Professor Adriano Aguzzi, and he recently commented on just this, on a cwd post on my facebook page August 20 at 1:44pm, quote;

''it pains me to no end to even comtemplate the possibility, but it seems entirely plausible that CWD originated from scientist-made spread of scrapie from sheep to deer in the colorado research facility. If true, a terrible burden for those involved.'' August 20 at 1:44pm ...end
”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” page 26.

https://web.archive.org/web/20060307063531/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

SHOOTING PENS (HIGH/LOW FENCE), CAPTIVE CERVID FARMING, BREEDING, SPERM MILLS, ANTLER MILLS, URINE MILLS, a petri dish for cwd tse prion disease...

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep. 

https://web.archive.org/web/20170126060744/http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry....gov.uk/files/mb/m11b/tab01.pdf

COLORADO THE ORIGIN OF CHRONIC WASTING DISEASE CWD TSE PRION?

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep. 

IN CONFIDENCE, REPORT OF AN UNCONVENTIONAL SLOW VIRUS DISEASE IN ANIMALS IN THE USA 1989

http://webarchive.nationalarchives.gov.uk/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf

FRIDAY, APRIL 22, 2016 

Texas Scrapie Confirmed in a Hartley County Sheep where CWD was detected in a Mule Deer April 22, 2016


THURSDAY, JUNE 09, 2016

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie TSE Prion Experiment 1964

Scrapie Field Trial Experiments Mission, Texas, The Moore Air Force Base Scrapie Experiment 1964

How Did CWD Get Way Down In Medina County, Texas?

Confucius ponders...

Could the Scrapie experiments back around 1964 at Moore Air Force near Mission, Texas, could this area have been ground zero for CWD TSE Prion (besides the CWD cases that have waltzed across the Texas, New Mexico border near WSMR Trans Pecos region since around 2001)?

Epidemiology of Scrapie in the United States 1977

snip...

Scrapie Field Trial Experiments Mission, Texas

A Scrapie Field Trial was developed at Mission, Texas, to provide additional information for the eradication program on the epidemiology of natural scrapie. The Mission Field Trial Station is located on 450 acres of pastureland, part of the former Moore Air Force Base, near Mission, Texas. It was designed to bring previously exposed, and later also unexposed, sheep or goats to the Station and maintain and breed them under close observation for extended periods to determine which animals would develop scrapie and define more closely the natural spread and other epidemiological aspects of the disease.

The 547 previously exposed sheep brought to the Mission Station beginning in 1964 were of the Cheviot, Hampshire, Montadale, or Suffolk breeds. They were purchased as field outbreaks occurred, and represented 21 bloodlines in which scrapie had been diagnosed. Upon arrival at the Station, the sheep were maintained on pasture, with supplemental feeding as necessary. The station was divided into 2 areas: (1) a series of pastures and-pens occupied by male animals only, and (2) a series of pastures and pens occupied by females and young progeny of both sexes. ...

snip...see full text ;


Mission, Texas Scrapie transmission to cattle study



TEXAS CONFIRMS 117TH CASE OF CWD TSE PRION
 
WEDNESDAY, AUGUST 22, 2018

TEXAS CWD TSE PRION 16 MORE CASES DETECTED TOTAL TO DATE 117 CONFIRMED NEW 14 BREEDERS 2 FREE RANGE



Atypical NOR98 Scrapie to humans as sporadic CJD
 
Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits, see also ; All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.
 

 
ATYPICAL NOR-98, AND IT'S POTENTIAL FOR TRANSMISSION TO HUMANS Prusiner et al ;
 
A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes
 
Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations
 
*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway
 
***Edited by Stanley B.. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)
 
Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice.
 
*** These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.
 
 
OR
 
***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.
 

 
OR
 
*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.
 



PRION CONFERENCE ABSTRACT LINKS NEUROPRION LINKS ARE NO LONGER AVAILABLE FOR PUBLIC

SO SAD, and i have a feeling, just from the problems from 2018, these conference and information there from in the future, imo, will be harder and harder to get for the layperson...just my opinion, and i do hope i am wrong...tss



see;


P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,

Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

***The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.

 

 PR-26

NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS

R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway

Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as "atypical" scrapie, as opposed to "classical scrapie". Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion.

*** Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.

119




Sunday, December 12, 2010

EFSA reviews BSE/TSE infectivity in small ruminant tissues News Story 2 December 2010



Sunday, April 18, 2010

SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010



Thursday, December 23, 2010

Molecular Typing of Protease-Resistant Prion Protein in Transmissible Spongiform Encephalopathies of Small Ruminants, France, 2002-2009

Volume 17, Number 1 January 2011



Thursday, November 18, 2010

Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep



Monday, April 25, 2011

Experimental Oral Transmission of Atypical Scrapie to Sheep

Volume 17, Number 5-May 2011



Friday, February 11, 2011

Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues



Thursday, March 29, 2012

atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012

NIAA Annual Conference April 11-14, 2011San Antonio, Texas



Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine (reticular) deposits, see also ; All of the Heidenhain variants were of the methionine/ methionine type 1 molecular subtype.

 
*** The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
 
VARIABLY PROTEASE-SENSITVE PRIONOPATHY IS TRANSMISSIBLE ...price of prion poker goes up again $
 
OR-10: Variably protease-sensitive prionopathy is transmissible in bank voles
 
Romolo Nonno,1 Michele Di Bari,1 Laura Pirisinu,1 Claudia D’Agostino,1 Stefano Marcon,1 Geraldina Riccardi,1 Gabriele Vaccari,1 Piero Parchi,2 Wenquan Zou,3 Pierluigi Gambetti,3 Umberto Agrimi1 1Istituto Superiore di Sanità; Rome, Italy; 2Dipartimento di Scienze Neurologiche, Università di Bologna; Bologna, Italy; 3Case Western Reserve University; Cleveland, OH USA
 
Background. Variably protease-sensitive prionopathy (VPSPr) is a recently described “sporadic”neurodegenerative disease involving prion protein aggregation, which has clinical similarities with non-Alzheimer dementias, such as fronto-temporal dementia. Currently, 30 cases of VPSPr have been reported in Europe and USA, of which 19 cases were homozygous for valine at codon 129 of the prion protein (VV), 8 were MV and 3 were MM. A distinctive feature of VPSPr is the electrophoretic pattern of PrPSc after digestion with proteinase K (PK). After PK-treatment, PrP from VPSPr forms a ladder-like electrophoretic pattern similar to that described in GSS cases. The clinical and pathological features of VPSPr raised the question of the correct classification of VPSPr among prion diseases or other forms of neurodegenerative disorders. Here we report preliminary data on the transmissibility and pathological features of VPSPr cases in bank voles.
 
Materials and Methods. Seven VPSPr cases were inoculated in two genetic lines of bank voles, carrying either methionine or isoleucine at codon 109 of the prion protein (named BvM109 and BvI109, respectively). Among the VPSPr cases selected, 2 were VV at PrP codon 129, 3 were MV and 2 were MM. Clinical diagnosis in voles was confirmed by brain pathological assessment and western blot for PK-resistant PrPSc (PrPres) with mAbs SAF32, SAF84, 12B2 and 9A2.
 
Results. To date, 2 VPSPr cases (1 MV and 1 MM) gave positive transmission in BvM109. Overall, 3 voles were positive with survival time between 290 and 588 d post inoculation (d.p.i.). All positive voles accumulated PrPres in the form of the typical PrP27–30, which was indistinguishable to that previously observed in BvM109 inoculated with sCJDMM1 cases.
 
In BvI109, 3 VPSPr cases (2 VV and 1 MM) showed positive transmission until now. Overall, 5 voles were positive with survival time between 281 and 596 d.p.i.. In contrast to what observed in BvM109, all BvI109 showed a GSS-like PrPSc electrophoretic pattern, characterized by low molecular weight PrPres. These PrPres fragments were positive with mAb 9A2 and 12B2, while being negative with SAF32 and SAF84, suggesting that they are cleaved at both the C-terminus and the N-terminus. Second passages are in progress from these first successful transmissions.
 
Conclusions. Preliminary results from transmission studies in bank voles strongly support the notion that VPSPr is a transmissible prion disease. Interestingly, VPSPr undergoes divergent evolution in the two genetic lines of voles, with sCJD-like features in BvM109 and GSS-like properties in BvI109.
 
The discovery of previously unrecognized prion diseases in both humans and animals (i.e., Nor98 in small ruminants) demonstrates that the range of prion diseases might be wider than expected and raises crucial questions about the epidemiology and strain properties of these new forms. We are investigating this latter issue by molecular and biological comparison of VPSPr, GSS and Nor98.
 
 
Monday, June 27, 2011
 
Comparison of Sheep Nor98 with Human Variably Protease-Sensitive Prionopathy and Gerstmann-Sträussler-Scheinker Disease
 
 

CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994
 
Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...
 
Table 9 presents the results of an analysis of these data.
 
There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).
 
Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.
 
There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).
 
The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).
 
There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).
 
The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).
 
snip...
 
It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).
 
snip...
 
In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...
 
snip...
 
In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A.. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)
 
snip...see full report ;
 


Thursday, October 10, 2013
 
CJD REPORT 1994 increased risk for consumption of veal and venison and lamb
 

 
Monday, November 30, 2009
 
***> USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE
 

 
Thursday, December 20, 2012
 
***> OIE GROUP RECOMMENDS THAT SCRAPE PRION DISEASE BE DELISTED, WISHES TO CONTINUE SPREADING IT AROUND THE GLOBE
 


THURSDAY, APRIL 26, 2018 

Scrapie USA update 471 classical and 12 Nor98-like cases confirmed to date

http://scrapie-usa.blogspot.com/2018/04/scrapie-usa-update-471-classical-and-12.html
 

P.97: Scrapie transmits to white-tailed deer by the oral route and has a molecular profile similar to chronic wasting disease and distinct from the scrapie inoculum

Justin Greenlee1, S JO Moore1, Jodi Smith1, M Heather WestGreenlee2 and Robert Kunkle1

1National Animal Disease Center; Ames, IA USA

2Iowa State University; Ames, IA USA

The purpose of this work was to determine susceptibility of white-tailed deer (WTD) to the agent of sheep scrapie and to compare the resultant PrPSc to that of the original inoculum and chronic wasting disease (CWD). We inoculated WTD by a natural route of exposure (concurrent oral and intranasal (IN); n = 5) with a US scrapie isolate. All scrapie-inoculated deer had evidence of PrPSc accumulation. PrPSc was detected in lymphoid tissues at preclinical time points, and deer necropsied after 28 months post-inoculation had clinical signs, spongiform encephalopathy, and widespread distribution of PrPSc in neural and lymphoid tissues. Western blotting (WB) revealed PrPSc with 2 distinct molecular profiles. WB on cerebral cortex had a profile similar to the original scrapie inoculum, whereas WB of brainstem, cerebellum, or lymph nodes revealed PrPSc with a higher profile resembling CWD. Homogenates with the 2 distinct profiles from WTD with clinical scrapie were further passaged to mice expressing cervid prion protein and intranasally to sheep and WTD. In cervidized mice, the 2 inocula have distinct incubation times. Sheep inoculated intranasally with WTD derived scrapie developed disease, but only after inoculation with the inoculum that had a scrapie-like profile. The WTD study is ongoing, but deer in both inoculation groups are positive for PrPSc by rectal mucosal biopsy. 

***In summary, this work demonstrates that WTD are susceptible to the agent of scrapie, 2 distinct molecular profiles of PrPSc are present in the tissues of affected deer, and inoculum of either profile readily passes to deer.



*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA


 
White-tailed deer are susceptible to the agent of sheep scrapie by intracerebral inoculation

snip...

It is unlikely that CWD will be eradicated from free-ranging cervids, and the disease is likely to continue to spread geographically [10]. However, the potential that white-tailed deer may be susceptible to sheep scrapie by a natural route presents an additional confounding factor to halting the spread of CWD. This leads to the additional speculations that

1) infected deer could serve as a reservoir to infect sheep with scrapie offering challenges to scrapie eradication efforts and

2) CWD spread need not remain geographically confined to current endemic areas, but could occur anywhere that sheep with scrapie and susceptible cervids cohabitate.

This work demonstrates for the first time that white-tailed deer are susceptible to sheep scrapie by intracerebral inoculation with a high attack rate and that the disease that results has similarities to CWD. These experiments will be repeated with a more natural route of inoculation to determine the likelihood of the potential transmission of sheep scrapie to white-tailed deer. If scrapie were to occur in white-tailed deer, results of this study indicate that it would be detected as a TSE, but may be difficult to differentiate from CWD without in-depth biochemical analysis.



2012

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

snip...

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.


 
2011

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.



FRIDAY, APRIL 20, 2018 

*** Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban? 

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies



***> Subject: Scrapie Transmits To Pigs By Oral Route, what about the terribly flawed USA tse prion feed ban? <***

Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies 2017 Annual Report

1a. Objectives (from AD-416): 

Objective 1: Investigate the mechanisms of protein misfolding in prion disease, including the genetic determinants of misfolding of the prion protein and the environmental influences on protein misfolding as it relates to prion diseases. Subobjective 1.A: Investigate the differences in the unfolded state of wild-type and disease associated prion proteins to better understand the mechanism of misfolding in genetic prion disease. Subobjective 1.B: Investigate the influence of metal ions on the misfolding of the prion protein in vitro to determine if environmental exposure to metal ions may alter disease progression. Objective 2: Investigate the pathobiology of prion strains in natural hosts, including the influence of prion source genotype on interspecies transmission and the pathobiology of atypical transmissible spongiform encephalopathies (TSEs). Subobjective 2.A: Investigate the pathobiology of atypical TSEs. Subobjective 2.B: Investigate the influence of prion source genotype on interspecies transmission. Objective 3: Investigate sampling methodologies for antemortem detection of prion disease, including the utility of blood sampling as a means to assess prion disease status of affected animals and the utility of environmental sampling for monitoring herd prion disease status. Subobjective 3.A: Investigate the utility of blood sampling as a means to assess prion disease status of affected animals. Subobjective 3.B: Investigate the utility of environmental sampling for monitoring herd prion disease status.

1b. Approach (from AD-416): 

The studies will focus on three animal transmissible spongiform encephalopathy (TSE) agents found in the United States: bovine spongiform encephalopathy (BSE); scrapie of sheep and goats; and chronic wasting disease (CWD) of deer, elk, and moose. The research will address sites of protein folding and misfolding as it relates to prion disease, accumulation of misfolded protein in the host, routes of infection, and ante mortem diagnostics with an emphasis on controlled conditions and natural routes of infection. Techniques used will include spectroscopic monitoring of protein folding/misfolding, clinical exams, histopathology, immunohistochemistry, and biochemical analysis of proteins. The enhanced knowledge gained from this work will help understand the underlying mechanisms of prion disease and mitigate the potential for unrecognized epidemic expansions of these diseases in populations of animals that could either directly or indirectly affect food animals.

3. Progress Report: 

All 8 project plan milestones for FY17 were fully met. Research efforts directed toward meeting objective 1 of our project plan center around the production of recombinant prion protein from either bacteria or mammalian tissue culture systems and collection of thermodynamic data on the folding of the recombinant prion protein produced. Both bacterial and mammalian expression systems have been established. Thermodynamic data addressing the denatured state of wild-type and a disease associated variant of bovine prion protein has been collected and a manuscript is in preparation. In research pertaining to objective 2, all studies have been initiated and animals are under observation for the development of clinical signs. The animal studies for this objective are long term and will continue until onset of clinical signs. In vitro studies planned in parallel to the animals studies have similarly been initiated and are ongoing. Objective 3 of the project plan focuses on the detection of disease associated prion protein in body fluids and feces collected from a time course study of chronic wasting disease inoculated animals. At this time samples are being collected as planned and methods for analysis are under development.

4. Accomplishments 

1. Showed that swine are potential hosts for the scrapie agent. A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested. ARS researchers at Ames, Iowa conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Necropsies were done on a subset of animals at approximately 6 months post inoculation (PI): the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of transmissible spongiform encephalopathies (TSE) until study termination at 80 months PI or when removed due to intercurrent disease. Brain samples were examined by multiple diagnostic approaches, and for a subset of pigs in each inoculation group, bioassay in mice expressing porcine prion protein. At 6 months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.
2. Determined that pigs naturally exposed to chronic wasting disease (CWD) may act as a reservoir of CWD infectivity. Chronic wasting disease is a naturally occurring, fatal, neurodegenerative disease of cervids. The potential for swine to serve as a host for the agent of CWD disease is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Pigs were assigned to 1 of 3 groups: intracranially inoculated; orally inoculated; or non-inoculated. At market weight age, half of the pigs in each group were tested ('market weight' groups). The remaining pigs ('aged' groups) were allowed to incubate for up to 73 months post inoculation (MPI). Tissues collected at necropsy were examined for disease-associated prion protein (PrPSc) by multiple diagnostic methods. Brain samples from selected pigs were bioassayed in mice expressing porcine prion protein. Some pigs from each inoculated group were positive by one or more tests. Bioassay was positive in 4 out of 5 pigs assayed. Although only small amounts of PrPSc were detected using sensitive methods, this study demonstrates that pigs can serve as hosts for CWD. Detection of infectivity in orally inoculated pigs using mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. Currently, swine rations in the U.S. could contain animal derived components including materials from deer or elk. In addition, feral swine could be exposed to infected carcasses in areas where CWD is present in wildlife populations. The current feed ban in the U.S. is based exclusively on keeping tissues from TSE infected cattle from entering animal feeds. These results indicating the susceptibility of pigs to CWD, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health.
3. Developed a method for amplification and discrimination of the 3 forms of BSE in cattle. The prion protein (PrP) is a protein that is the causative agent of transmissible spongiform encephalopathies (TSEs). The disease process involves conversion of the normal cellular PrP to a pathogenic misfolded conformation. This conversion process can be recreated in the lab using a misfolding amplification process known as real-time quaking induced conversion (RT-QuIC). RT-QuIC allows the detection of minute amounts of the abnormal infectious form of the prion protein by inducing misfolding in a supplied substrate. Although RT-QuIC has been successfully used to detect pathogenic PrP with substrates from a variety of host species, prior to this work bovine prion protein had not been proven for its practical uses for RT-QuIC. We demonstrated that prions from transmissible mink encephalopathy (TME) and BSE-infected cattle can be detected with using bovine prion proteins with RT-QuIC, and developed an RT-QuIC based approach to discriminate different forms of BSE. This rapid and robust method, both to detect and discriminate BSE types, is of importance as the economic implications for different types of BSE vary greatly.

Review Publications 
Moore, S., Kunkle, R., Greenlee, M., Nicholson, E., Richt, J., Hamir, A., Waters, W., Greenlee, J. 2016. Horizontal transmission of chronic wasting disease in reindeer. Emerging Infectious Diseases. 22(12):2142-2145. doi:10.3201/eid2212.160635.
Moore, S.J., West Greenlee, M.H., Smith, J.D., Vrentas, C.E., Nicholson, E.M., Greenlee, J.J. 2016. A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation. Frontiers in Veterinary Science. 3:78.
Greenlee, J.J., Kunkle, R.A., Smith, J.D., West Greenlee, M.H. 2016. Scrapie in swine: a diagnostic challenge. Food Safety. 4(4):110-114.
Kondru, N., Manne, S., Greenlee, J., West Greenlee, H., Anantharam, V., Halbur, P., Kanthasamy, A., Kanthasamy, A. 2017. Integrated organotypic slice cultures and RT-QuIC (OSCAR) assay: implications for translational discovery in protein misfolding diseases. Scientific Reports. 7:43155. doi:10.1038/srep43155.
Mammadova, N., Ghaisas, S., Zenitsky, G., Sakaguchi, D.S., Kanthasamy, A.G., Greenlee, J.J., West Greenlee, M.H. 2017. Lasting retinal injury in a mouse model of blast-induced trauma. American Journal of Pathology. 187(7):1459-1472. doi:10.1016/j.ajpath.2017.03.005.




***> However, at 51 months of incubation or greater, 5 animals were positive by one or more diagnostic methods. Furthermore, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study) suggesting that swine are potential hosts for the agent of scrapie. <***



>*** Although the current U.S. feed ban is based on keeping tissues from TSE infected cattle from contaminating animal feed, swine rations in the U.S. could contain animal derived components including materials from scrapie infected sheep and goats. These results indicating the susceptibility of pigs to sheep scrapie, coupled with the limitations of the current feed ban, indicates that a revision of the feed ban may be necessary to protect swine production and potentially human health. <***


THE Aug. 1997 mad cow feed ban was/is a joke, BSE surveillance also was proven to be terribly flawed, along with BSE testing, shown to be flawed as well. 

ALSO, WHAT ABOUT CWD TRANSMITTING TO PIGS AS WELL, AND MAD CAMEL DISEASE NOW, BIG OUTBREAK, NOT SPONTANEOUS, WHAT ABOUT THAT, and the feed ban concern there as well? AND what about Scrapie transmission to the Macaque recently. seems the tse prion poker continue to goes up. very worrying...terry


***> CWD TO PIGS <***

Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

Location: Virus and Prion Research

Title: Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

Author item Moore, Sarah item Kunkle, Robert item Kondru, Naveen item Manne, Sireesha item Smith, Jodi item Kanthasamy, Anumantha item West Greenlee, M item Greenlee, Justin

Submitted to: Prion Publication Type: Abstract Only Publication Acceptance Date: 3/15/2017 Publication Date: N/A Citation: N/A Interpretive Summary:

Technical Abstract: Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study, neurological signs consistent with prion disease were observed only in one pig: an intracranially challenged pig that was euthanized at 64 months post-challenge. The purpose of this study was to use an antigen-capture immunoassay (EIA) and real-time quaking-induced conversion (QuIC) to determine whether PrPSc is present in lymphoid tissues from pigs challenged with the CWD agent.

Methods: At two months of age, crossbred pigs were challenged by the intracranial route (n=20), oral route (n=19), or were left unchallenged (n=9). At approximately 6 months of age, the time at which commercial pigs reach market weight, half of the pigs in each group were culled (<6 challenge="" groups="" month="" pigs="" remaining="" the="">6 month challenge groups) were allowed to incubate for up to 73 months post challenge (mpc). The retropharyngeal lymph node (RPLN) was screened for the presence of PrPSc by EIA and immunohistochemistry (IHC). The RPLN, palatine tonsil, and mesenteric lymph node (MLN) from 6-7 pigs per challenge group were also tested using EIA and QuIC.

Results: PrPSc was not detected by EIA and IHC in any RPLNs. All tonsils and MLNs were negative by IHC, though the MLN from one pig in the oral <6 5="" 6="" at="" by="" detected="" eia.="" examined="" group="" in="" intracranial="" least="" lymphoid="" month="" months="" of="" one="" pigs="" positive="" prpsc="" quic="" the="" tissues="" was="">6 months group, 5/6 pigs in the oral <6 4="" and="" group="" months="" oral="">6 months group. Overall, the MLN was positive in 14/19 (74%) of samples examined, the RPLN in 8/18 (44%), and the tonsil in 10/25 (40%). Conclusions:

This study demonstrates that PrPSc accumulates in lymphoid tissues from pigs challenged intracranially or orally with the CWD agent, and can be detected as early as 4 months after challenge.

CWD-infected pigs rarely develop clinical disease and if they do, they do so after a long incubation period.. This raises the possibility that CWD-infected pigs could shed prions into their environment long before they develop clinical disease.

Furthermore, lymphoid tissues from CWD-infected pigs could present a potential source of CWD infectivity in the animal and human food chains.

 

CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...


we cannot rule out the possibility that unrecognised subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.

 
Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....


snip...see much more here ;

WEDNESDAY, APRIL 05, 2017

Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease


WEDNESDAY, APRIL 05, 2017

*** Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease ***


PRION 2016 CONFERENCE TOKYO
 
IL-13 Transmission of prions to non human-primates: Implications for human populations
 
Jean-Philippe Deslys, Emmanuel E. Comoy
 
CEW, Institute of Emerging Diseases and Innovative Therapies (iMETI), Division of Prions and Related Diseases (SEPIA), Fontenay-aux-Roses, France
 
Prion diseases are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal prion disease might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, prion diseases, like the other proteinopathies, are reputed to occur spontaneously (atypical animal prion strains, sporadic CJD summing 80 % of human prion cases).
 
Non-human primate models provided the first evidences supporting the transmissibility of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health1, according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the risk of primary (oral) and secondary (transfusional) risk of BSE, and also the zoonotic potential of other animal prion diseases from bovine, ovine and cervid origins even after very long silent incubation periods.
 
We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold' . longer incubation than BSE2. Scrapie, as recently evoked in humanized mice3, is the third potentially zoonotic prion disease (with BSE and L-type BSE4), thus questioning the origin of human sporadic cases. We also observed hidden prions transmitted by blood transfusion in primate which escape to the classical diagnostic methods and extend the field of healthy carriers. We will present an updated panorama of our different long-term transmission studies and discuss the implications on risk assessment of animal prion diseases for human health and of the status of healthy carrier5.
 
1. Chen, C. C. & Wang, Y. H. Estimation of the Exposure of the UK Population to the Bovine Spongiform Encephalopathy Agent through Dietary Intake During the Period 1980 to 1996. PLoS One 9, e94020 (2014).
 
2. Comoy, E. E. et al. Transmission of scrapie prions to primate after an extended silent incubation period. Sci Rep 5, 11573 (2015).
 
3. Cassard, H. et al. Evidence for zoonotic potential of ovine scrapie prions. Nat Commun 5, 5821-5830 (2014).
 
4. Comoy, E. E. et al. Atypical BSE (BASE) transmitted from asymptomatic aging cattle to a primate. PLoS One 3, e3017 (2008).
 
5. Gill O. N. et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ. 347, f5675 (2013).
 
Curriculum Vitae
 
Dr. Deslys co-authored more than one hundred publications in international scientific journals on main aspects of applied prion research (diagnostic, decontamination techniques, risk assessment, and therapeutic approaches in different experimental models) and on underlying pathological mechanisms. He studied the genetic of the first cases of iatrogenic CJD in France. His work has led to several patents including the BSE (Bovine Spongiform Encephalopathy) diagnostic test most widely used worldwide. He also wrote a book on mad cow disease which can be downloaded here for free (http://www.neuroprion.org/pdf_docs/documentation/madcow_deslys.pdf). His research group is Associate Laboratory to National Reference Laboratory for CJD in France and has high security level microbiological installations (NeuroPrion research platform) with different experimental models (mouse, hamster, macaque). The primate model of BSE developed by his group with cynomolgus macaques turned out to mimick remarkably well the human situation and allows to assess the primary (oral) and secondary (transfusional) risks linked to animal and human prions even after very long silent incubation periods. For several years, his interest has extended to the connections between PrP and Alzheimer and the prion mechanisms underlying neurodegenerative diseases. He is coordinating the NeuroPrion international association (initially european network of excellence now open to all prion researchers).
 
- 59-
 
P-088 Transmission of experimental CH1641-like scrapie to bovine PrP overexpression mice
 
Kohtaro Miyazawa1, Kentaro Masujin1, Hiroyuki Okada1, Yuichi Matsuura1, Takashi Yokoyama2
 
1Influenza and Prion Disease Research Center, National Institute of Animal Health, NARO, Japan; 2Department of Planning and General Administration, National Institute of Animal Health, NARO
 
Introduction: Scrapie is a prion disease in sheep and goats. CH1641-lke scrapie is characterized by a lower molecular mass of the unglycosylated form of abnormal prion protein (PrpSc) compared to that of classical scrapie. It is worthy of attention because of the biochemical similarities of the Prpsc from CH1641-like and BSE affected sheep. We have reported that experimental CH1641-like scrapie is transmissible to bovine PrP overexpression (TgBoPrP) mice (Yokoyama et al. 2010). We report here the further details of this transmission study and compare the biological and biochemical properties to those of classical scrapie affected TgBoPrP mice.
 
Methods: The details of sheep brain homogenates used in this study are described in our previous report (Yokoyama et al. 2010). TgBoPrP mice were intracerebrally inoculated with a 10% brain homogenate of each scrapie strain. The brains of mice were subjected to histopathological and biochemical analyses.
 
Results: Prpsc banding pattern of CH1641-like scrapie affected TgBoPrP mice was similar to that of classical scrapie affected mice. Mean survival period of CH1641-like scrapie affected TgBoPrP mice was 170 days at the 3rd passage and it was significantly shorter than that of classical scrapie affected mice (439 days). Lesion profiles and Prpsc distributions in the brains also differed between CH1641-like and classical scrapie affected mice.
 
Conclusion: We succeeded in stable transmission of CH1641-like scrapie to TgBoPrP mice. Our transmission study demonstrates that CH 1641-like scrapie is likely to be more virulent than classical scrapie in cattle.
 
WS-02
 
Scrapie in swine: A diagnostic challenge
 
Justin J Greenlee1, Robert A Kunkle1, Jodi D Smith1, Heather W. Greenlee2
 
1National Animal Disease Center, US Dept. of Agriculture, Agricultural Research Service, United States; 2Iowa State University College of Veterinary Medicine
 
A naturally occurring prion disease has not been recognized in swine, but the agent of bovine spongiform encephalopathy does transmit to swine by experimental routes. Swine are thought to have a robust species barrier when exposed to the naturally occurring prion diseases of other species, but the susceptibility of swine to the agent of sheep scrapie has not been thoroughly tested.
 
Since swine can be fed rations containing ruminant derived components in the United States and many other countries, we conducted this experiment to test the susceptibility of swine to U.S. scrapie isolates by intracranial and oral inoculation. Scrapie inoculum was a pooled 10% (w/v) homogenate derived from the brains of clinically ill sheep from the 4th passage of a serial passage study of the U.S scrapie agent (No. 13-7) through susceptible sheep that were homozygous ARQ at prion protein residues 136, 154, and 171, respectively. Pigs were inoculated intracranially (n=19) with a single 0.75 ml dose or orally (n=24) with 15 ml repeated on 4 consecutive days. Necropsies were done on a subset of animals at approximately six months post inoculation (PI), at the time the pigs were expected to reach market weight. Remaining pigs were maintained and monitored for clinical signs of TSE until study termination at 80 months PI or when removed due to intercurrent disease (primarily lameness). Brain samples were examined by immunohistochemistry (IHC), western blot (WB), and enzyme-linked immunosorbent assay (ELISA). Brain tissue from a subset of pigs in each inoculation group was used for bioassay in mice expressing porcine PRNP.
 
At six-months PI, no evidence of scrapie infection was noted by any diagnostic method. However, at 51 months of incubation or greater, 5 animals were positive by one or more methods: IHC (n=4), WB (n=3), or ELISA (n=5). Interestingly, positive bioassay results were obtained from all inoculated groups (oral and intracranial; market weight and end of study).
 
Swine inoculated with the agent of scrapie by the intracranial and oral routes do not accumulate abnormal prion protein (PrPSc) to a level detectable by IHC or WB by the time they reach typical market age and weight. However, strong support for the fact that swine are potential hosts for the agent of scrapie comes from positive bioassay from both intracranially and orally inoculated pigs and multiple diagnostic methods demonstrating abnormal prion protein in intracranially inoculated pigs with long incubation times.
 
Curriculum Vitae
 
Dr. Greenlee is Research Veterinary Medical Officer in the Virus and Prion Research Unit at the National Animal Disease Center, US Department of Agriculture, Agricultural Research Service. He applies his specialty in veterinary anatomic pathology to focused research on the intra- and interspecies transmission of prion diseases in livestock and the development of antemortem diagnostic assays for prion diseases. In addition, knockout and transgenic mouse models are used to complement ongoing experiments in livestock species. Dr. Greenlee has publications in a number of topic areas including prion agent decontamination, effects of PRNP genotype on susceptibility to the agent of sheep scrapie, characterization of US scrapie strains, transmission of chronic wasting disease to cervids and cattle, features of H-BSE associated with the E211 K polymorphism, and the development of retinal assessment for antemortem screening for prion diseases in sheep and cattle. Dr. Greenlee obtained his DVM degree and completed the PhD/residency program in Veterinary Pathology at Iowa State University. He is a Diplomate of the American College of Veterinary Pathologists.
 
 
Research Project: TRANSMISSION, DIFFERENTIATION, AND PATHOBIOLOGY OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES
 
Title: Comparison of two US sheep scrapie isolates supports identification as separate strains
 
Authors
 
item Moore, Sarah - item Smith, Jodi item West Greenlee, Mary - item Nicholson, Eric item Richt, Juergen item Greenlee, Justin
 
Submitted to: Veterinary Pathology Publication Type: Peer Reviewed Journal Publication Acceptance Date: December 22, 2015 Publication Date: N/A
 
Interpretive Summary: Scrapie is a fatal disease of sheep and goats that causes damaging changes in the brain. The infectious agent is an abnormal protein called a prion that has misfolded from its normal state. Whether or not a sheep will get scrapie is determined primarily by their genetics. Furthermore, different scrapie strains exist that may result in a different expression of disease such as shorter incubation periods, unusual clinical signs, or unique patterns of lesions within the brain. This study evaluated two U.S. scrapie isolates in groups of sheep with varying susceptibilities to scrapie. Our data indicates that there are differences in incubation periods, sheep genotype susceptibilities, and lesion profiles that support designating these scrapie isolates as unique strains. The identification of a new scrapie strain in the United States means that control measures, methods of decontamination, and the potential for transmission to other species may need to be reevaluated.. This information is useful to sheep farmers and breeders that are selectively breeding animals with genotypes resistant to the most prevalent strain of scrapie and could impact future regulations for the control of scrapie in the United States. Technical Abstract: Scrapie is a naturally occurring transmissible spongiform encephalopathy (TSE) of sheep and goats. There are different strains of sheep scrapie that are associated with unique molecular, transmission, and phenotype characteristics, but very little is known about the potential presence of scrapie strains within sheep in the US. Scrapie strain and PRNP genotype could both affect susceptibility, potential for transmission, incubation period, and control measures required for eliminating scrapie from a flock. Here we evaluate two US scrapie isolates, No. 13-7 and x124, after intranasal inoculation to compare clinical signs, incubation periods (IP), spongiform lesions, and patterns of PrPSc deposition in sheep with scrapie-susceptible PRNP genotypes (QQ171). After inoculation with x124, susceptibility and IP were associated with valine at codon 136 (V136) of the prion protein: VV136 had short IPs (6.9 months), AV136 sheep were 11.9 months, and AA136 sheep did not develop scrapie. All No.13-7 inoculated sheep developed scrapie with IP’s of 20.1 months for AA136 sheep, 22.8 months for AV136 sheep, and 26.7 months for VV136 sheep. Patterns of immunoreactivity in the brain were influenced by challenge isolate and host genotype. Differences in PrPSc profiles versus isolate were most striking when examining brains from sheep with the VV136 genotype. In summary, intranasal inoculation with isolates x124 and No. 13-7 resulted in differences in IP, sheep genotype susceptibility, and PrPSc profile that support designation as separate strains.
 
Last Modified: 6/6/2016
 
 
31
 
Appendix I VISIT TO USA - OR A E WRATHALL — INFO ON BSE AND SCRAPIE
 
Dr Clark lately of the scrapie Research Unit, Mission Texas has
 
successfully transmitted ovine and caprine scrapie to cattle. The
 
experimental results have not been published but there are plans to do
 
this. This work was initiated in 1978. A summary of it is:-
 
Expt A 6 Her x Jer calves born in 1978 were inoculated as follows with
 
a 2nd Suffolk scrapie passage:-
 
i/c 1ml; i/m, 5ml; s/c 5ml; oral 30ml.
 
1/6 went down after 48 months with a scrapie/BSE-like disease.
 
Expt B 6 Her or Jer or HxJ calves were inoculated with angora Goat
 
virus 2/6 went down similarly after 36 months.
 
Expt C Mice inoculated from brains of calves/cattle in expts A & B were resistant, only 1/20 going down with scrapie and this was the reason given for not publishing.
 
Diagnosis in A, B, C was by histopath. No reports on SAF were given.
 
Dr Warren Foote indicated success so far in eliminating scrapie in offspring from experimentally— (and naturally) infected sheep by ET. He had found difficulty in obtaining embryos from naturally infected sheep (cf SPA).
 
Prof. A Robertson gave a brief accout of BSE. The us approach was to
 
32
 
accord it a very low profile indeed. Dr A Thiermann showed the picture in the "Independent" with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs.
 
BSE was not reported in USA.
 
4. Scrapie incidents (ie affected flocks) have shown a dramatic increase since 1978. In 1953 when the National Control scheme was started there were 10-14 incidents, in 1978 - 1 and in 1988 so far 60.
 
5. Scrapie agent was reported to have been isolated from a solitary fetus.
 
6. A western blotting diagnostic technique (? on PrP) shows some promise.
 
7. Results of a questionnaire sent to 33 states on the subject of the national sheep scrapie programme survey indicated
 
17/33 wished to drop it
 
6/33 wished to develop it
 
8/33 had few sheep and were neutral
 
Information obtained from Dr Wrathall‘s notes of a meeting of the u.s.
 
Animal Health Association at Little Rock, Arkansas Nov. 1988.
 
33
 
In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells
 
3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...
 
 
also see hand written notes ;
 
 
Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle
 
Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.
 
snip...
 
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...
 
 
EVIDENCE OF SCRAPIE IN SHEEP AS A RESULT OF FOOD BORNE EXPOSURE
 
This is provided by the statistically significant increase in the incidence of sheep scrape from 1985, as determined from analyses of the submissions made to VI Centres, and from individual case and flock incident studies. ........
 
 
RISK OF BSE TO SHEEP VIA FEED
 
 
OPII-1
 
Disease incidence and incubation period of BSE and CH1641 in sheep is associated with PrP gene polymorphisms.
 
Goldman WI, Hunter N., Benson G., Foster J. and Hope J. AFRC&MRC Neuropathogenesis Unit, Institute for Animal Health, West Mains Rd. Edinburgh EH9 3JF. U.K.
 
The relative survival periods of mice with different Sine genotype have long been used for scrapie strain typing. The PrP protein. a key molecule in the pathogenesis of scrapie and related diseases, is a product of the Sine locus and homologous proteins are also linked to disease-incidence loci in sheep and man. In sheep alleles of this locus (Sip) encode several PrP protein variants, of which one has been associated with short incubation periods of Cheviot sheep infected with SSBP/1 scrapie. Other isolates, i.e. BSE or CH1641. cause a different pattern of incubation periods and a lower disease incidence in the same flock of Cheviot sheep. Using transmission to sheep of known PrP genotype as our criterion for agent strain typing. we have found a link between BSE and CH1641. a C-group strain of scrapie. Disease susceptibility of sheep to these isolates is associated with different PrP genotypes compared to SSBP/1 scrapie.
 
OPII –2
 
Transmission of Bovine Spongiform Encephalopathy in sheep, goats and mice.
 
Foster J., Hope J., McConnell I. and Fraser H. Institute for Animal Health, AFRC and MRC Neuropathogenesis Unit, Kings Buildings, West Mains Road, Edinburgh EH9 3JF
 
Bovine Spongiform Encephalopathy (BSE) has been transmitted in two lines of genetically selected sheep [differing in their susceptibilities to the SSBP/1 source of scrapie), and to goats by intracerebral injection and by oral dosing. Incubation periods in sheep for both routes of challenge ranged from 440-994 days. In goats this range was 506-1508 days. Both routes of infection in sheep and goats were almost equally efficient. In mice, primary transmission of BSE identified a sinc-independant genetic control of incubation period. Also, intermediate passage of BSE in sheep or goats did not alter these primary transmission properties. Hamsters were susceptible to BSE only after intervening passage through mice.
 
 
Wednesday, January 18, 2012
 
BSE IN GOATS CAN BE MISTAKEN FOR SCRAPIE
 
February 1, 2012
 
 
Wednesday, January 18, 2012
 
Selection of Distinct Strain Phenotypes in Mice Infected by Ovine Natural Scrapie Isolates Similar to CH1641 Experimental Scrapie
 
Journal of Neuropathology & Experimental Neurology:
 
February 2012 - Volume 71 - Issue 2 - p 140–147
 

Scrapie-like disorder in a Nyala (Tragelaphus angasi)
 
IN CONFIDENCE
 
 
 
 
Spongiform encephalopathy has so far only been recorded in the sheep and goat, man, mink, and several deer including the mule deer, black tailed deer and the elk (most, if not all, of the deer incidents occurred in wild life parts in Wyoming and Colorado). Clinical cases in deer all occurred from 3 1/2 to 5 years old and usually 60-80% losses occurred over a 4 year period...
 
 
The clinical and neuropathological findings in F22 are consistent with the spongiform encephalopathies of animals and man. The agents causing spongiform encephalopathy in various species cannot be unequivocally distinguished and some isolates of human agent cause neurologic disease in goats indistinguishable from scrapie. The spongiform encephalopathies are invariably fatal once clinical signs of disease are evident and as very high fatality rates (79% of 67 animals) are recorded in Mule deer it is important that an awareness of the disease is maintained at Marwell.
 
 
STRICTLY IN CONFIDENCE
 
EXTRACT FROM MINUTES OF SCIENTIFIC COMMITTEE MEETING HELD ON 29 SEPTEMBER 1994
 
BSE: S33/94
 
a) Sampling of Ruminant Feeding stuffs for Ruminant Protein:
 
The voluntary sampling‘ on farms with suspected cases of BSE had commenced on 1 July 1994. The ELISA technique detected the presence of ruminant meat and bone meal to a level of 0.25% in finished feeding stuffs. MAFF had released a pre-publication copy of a paper discussing this technique which had been developed at the VI Centre Luddington. It provided detail of the use of the technique in meat and bone meal. It did not, however, discuss the extension of the assay for use in compound feeding stuffs. At the request of UKASTA, MAFF was looking at making the service commercially available in order for individual compounders to do their own testing. MAFF estimated that the charge for such testing would be £35 per sample (plus VAT).
 
It was reported that Luddington was carrying out further work in identifying potential sources of interference, from individual raw materials, which might produce a false positive result It was understood that glutens were considered to present a particular problem. During a discussion the Committee suggested that the conditioning temperatures, in different mills, might have varying effects on the breakdown of proteins in animal feeding stuffs.
 
A number of sites where cross contamination between animal proteins and other types of raw materials might occur were identified. These included not only on-farm but in-store, in the country of origin, in boats, in transport as well as different points within the feed mill. It was noted, however, that it might be counter productive to stress these varying numbers and sites.
 
Concern was expressed that the MAFF had commenced on-farm testing without necessarily thinking through the consequences for the whole of the agricultural industry. Officials were aware that one course of action open to feed compounders was to stop using meat and bone meal in the manufacture of any feeding stuff. An alternative for the industry was the establishment of ruminant feed only Such a step would only be open to those companies with more than one manufacturing site.
 
Cont'd/...2
 
94/9.29/3.1
 
b)
 
-2-
 
A decision by the industry as a whole to stop using meat and bone meal would have cost implications for the whole livestock industry. Not only would there be poorer returns to beef producers but also higher raw material costs for compounders when producing pig and poultry feeding stuffs. There would also be the problem of disposing of the unwanted animal by-products. Thus, it was agreed that whatever the actual consequences the effect o:n the livestock industry as a whole would be very damaging.
 
Proposed Survey of Past a.nd Present Practices in Members Feed Mills:
 
A copy of the draft questionnaire was circulated to Committee members “Strictly in Confidence". This was designed to investigate the likelihood that feed produced after the introduction of the ruminant feed ban could have become contaminated with ruminant derived protein and whether the likelihood of contamination had changed over time. In discussing the contents, UKASTA had not given any indication, on behalf of members, that they wanted them to complete the questionnaire when finalised. MAFF had also been made fully aware of UKASTA's concern that information submitted in response to the questionnaire by individual companies might, at some future time, be subpoenaed by a Court. This would be in any case taken against the company by a farmer seeking compensation for BSE in his herd.
 
The Committee was advised that a member company was still in debate over a case concerning the Fowl Pest outbreak in 1984. Lawyers acting for poultry producers had. submitted subpoenas for relevant Ministry documents. MAFF Legal Department was looking at the papers and aimed to resist the subpoena. However, the outcome of this action would not be known until March 1995. At the very least, it was considered that compounders should not: complete the questionnaire until the outcome of the Fowl Pest discussions were known. It was also reported that another company had been recommended, by its legal advisors, not to complete the questionnaire.
 
At a scientific level, it was noted that the aim of the CVL was to explain why BABs had occurred. Unfortunately, in the investigations it was necessary to identify the name and address of individual mills on the questionnaire in order to reconcile information on BABs regarding feeding practices on farm. It would not be possible for questionnaires to be sent to the CVL via UKASTA on an anonymous basis. UKASTA was seeking guidance from the Association's solicitors on what powers MAFF might have to require completion of the questionnaire.
 
It was suggested that whilst the CVL was finalising details of the questionnaire UKASTA should co-operate. Thus members were asked to send to the Secretariat their comments on the contents of the questionnaire by mid-November. Views were particularly required on which questions were difficult and/ or impossible to answer both because they were
 
Cont'd/...3 94/9.29/3.2
 
-3-
 
impractical as well as being able to put individual companies in a vulnerable position. These were to be passed on to the CVL with a request for amendments and/ or detailed responses in time for the Committee to discuss at the December meeting. Members were asked to discuss the questionnaire with as few people as possible because of the sensitive nature of this subject.
 
Members were also asked to keep the Secretariat informed of the nature of any enquiries which MAFF officials might address to them. It was also noted, by one member company who no longer used meat and bone meal, that since taking such action they had not received any queries from MAFF.
 
C) Recent Legislation:
 
The MAFF was implementing the two EU Decisions agreed in May. The ban on the use of mammalian meat and bone meal in ruminant feedingstuffs was to be incorporated into the BSE Order. At the same time the SBO ban was to be extended to cover the thymus and intestines of calves less than six months of age.
 
The European legislation on the rendering industry introduced a processing time/ temperature combination based on the results of rendering trials which had achieved an 80-fold diminution of the BSE agent. The legislation was not due to be brought into operation until the end of 1994. It was, however, hoped that UK rendering plants could have their processes validated and thus be in compliance with the new legislation by the end of October. Although it was not possible to prove zero infectivity, MAFF considered that adherence to the new standards would be a huge step forward in the control of BSE.
 
The Ministry was also reviewing the SBO legislation in order to make it more straightforward an.d simple to operate. The Committee also noted that, because of the nature of the material concerned, it would be extremely difficult to enforce the legislation. Concern was expressed, therefore, that the Ministry might just be introducing controls on paper. Effective auditing of the legislation should be introduced; for example by weighing the amount of SBO's collected and comparing this against the number of animals slaughtered.
 
In the light of all these concerns, the Committee considered that an easy reaction would be for the feed industry to stop using meat and bone meal in the manufacture of any animal feeding stuff. However, whereas this would be relatively painless, if somewhat expensive, for the feed industry, it would have serious repercussions throughout the whole of the livestock industry. It would also beg the question as to why it was safe for humans to eat meat whilst the by-products of the butchery trade that we use to produce meat and bone meal were unsatisfactory for animals.
 
Cont'd/...4
 
94/9.29/3.3
 
-4-
 
d) Origins of BSE:
 
A transcript of the Radio 4 interview with Mr. Keith Meldrum, Chief Veterinary Officer, held on 22 September was circulated. This raised the possibility of BSE being of bovine as opposed to ovine origin. Clarification had, therefore, been sought from the CVL. The response was that it was not possible to dismiss the possibility that BSE was bovine in origin. However, it was more difficult to support such a theory given current knowledge whereby the BSE epidemic had seen a sudden increase in numbers in the mid 1980's. It was thus still considered that the epidemic was explained by :-
 
- High level of sheep numbers in the UK;
 
- A change in the rendering practices in the late 1970's which permitted infected ovine material to survive the production process;
 
- The recycling of bovine material in the cattle population.
 
For BSE to be solely of bovine origin there would have had to have been a high prevalence of infected animals prior to the mid—1980‘s and this was not seen. It was thus possible that there was an element of politics in the comments made by Mr. Meldrum and it was probably no coincidence that a report of possible BSE cases in northern Germany had emerged at about the same time.
 
Meeting with Minister:
 
The Committee was advised that if necessary the Association would request
 
a meeting with the Minister to outline members‘ concerns regarding BSE and associated matters.
 
94/9.29/3.4
 
STRICTLY IN CONFIDENCE 

 
1988: Letter entitled ‘Scrapie, Time to take HB Parry Seriously’ (YB88/6.8/4.1)
 
24. In this letter I stated that BSE had been officially confirmed as a TSE (when much of the veterinary profession still favoured a variety of alternate hypotheses). I also suggested that scrapie should be made a notifiable disease, and drew attention to the work of HB 'James' Parry and the possibility that natural scrapie in sheep might be of genetic origin.
 
25. I withdrew the letter following advice from Professor Barlow (who as far as I can recall had been contacted by MAFF and the Veterinary Record) that it might not be in my interests to pursue publication at that moment in time.
 
26. I received a letter from the then editor, Edward Boden, questioning my permission to release the information that BSE was indeed a proven TSE. I had no permission, though was unaware that any was needed, to inform my profession of this urgent and important fact.
 
snip...
 
Surveillance for emerging scrapie-like diseases in animals in the UK
 
36. Working with Gerald Wells and other pathologists from the State Veterinary Service, I was involved with surveillance for neurological disease of animals in the UK. This was with particular reference to surveillance for, and subsequent confirmation of TSEs. During my time of employment, novel TSEs arose in domestic cats and in exotic ungulates in zoological collections. I also became involved in the investigation of a putative TSE in hound packs detected by Robert Higgins.
 
FSE, and BSE in exotic ungulates published in reviews:
 
1991 (Wells and McGill) ref 5
 
7
 
1992 (Wells and McGill) ref 7
 
FSE discussed in para 15.
 
37. Putative TSE in hounds - work started 1990 –(see para 41)
 
Robert Higgins, a Veterinary Investigation Officer at Thirsk, had been working on a hound survey in 1990. Gerald Wells and I myself received histological sections from this survey along with the accompanying letter (YB90/11.28/1.1) dated November 1990. This letter details spongiform changes found in brains from hunt hounds failing to keep up with the rest of the pack, along with the results of SAF extractions from fresh brain material from these same animals. SAFs were not found in brains unless spongiform changes were also present. The spongiform changes were not pathognomonic (ie. conclusive proof) for prion disease, as they were atypical, being largely present in white matter rather than grey matter in the brain and spinal cord. However, Tony Scott, then head of electron microscopy work on TSEs, had no doubt that these SAFs were genuine and that these hounds therefore must have had a scrapie-like disease. I reviewed all the sections myself (original notes appended) and although the pathology was not typical, I could not exclude the possibility that this was a scrapie-like disorder, as white matter vacuolation is seen in TSEs and Wallerian degeneration was also present in the white matter of the hounds, another feature of scrapie.
 
38. I reviewed the literature on hound neuropathology, and discovered that micrographs and descriptive neuropathology from papers on ‘hound ataxia’ mirrored those in material from Robert Higgins’ hound survey. Dr Tony Palmer (Cambridge) had done much of this work, and I obtained original sections from hound ataxia cases from him. This enabled me provisionally to conclude that Robert Higgins had in all probability detected hound ataxia, but also that hound ataxia itself was possibly a TSE. Gerald Wells confirmed in ‘blind’ examination of single restricted microscopic fields that there was no distinction between the white matter vacuolation present in BSE and scrapie cases, and that occurring in hound ataxia and the hound survey cases.
 
39. Hound ataxia had reportedly been occurring since the 1930’s, and a known risk factor for its development was the feeding to hounds of downer cows, and particularly bovine offal.. Circumstantial evidence suggests that bovine offal may also be causal in FSE, and TME in mink. Despite the inconclusive nature of the neuropathology, it was clearly evident that this putative canine spongiform encephalopathy merited further investigation.
 
40. The inconclusive results in hounds were never confirmed, nor was the link with hound ataxia pursued. I telephoned Robert Higgins six years after he first sent the slides to CVL. I was informed that despite his submitting a yearly report to the CVO including the suggestion that the hound work be continued, no further work had been done since 1991. This was surprising, to say the very least.
 
41. The hound work could have provided valuable evidence that a scrapie-like agent may have been present in cattle offal long before the BSE epidemic was recognised. The MAFF hound survey remains unpublished.
 
Histopathological support to various other published MAFF experiments
 
 
Seriously’ (YB88/6.8/4.1)
 
HB Parry Seriously’ (YB88/6.8/4.1)
 
IF the scrapie agent is generated from ovine DNA and thence causes disease in other species, then perhaps, bearing in mind the possible role of scrapie in CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the notifiable disease.
 
 
1: Neuroepidemiology. 1985;4(4):240-9.
 
Sheep consumption: a possible source of spongiform encephalopathy in humans.
 
Davanipour Z, Alter M, Sobel E, Callahan M.
 
A fatal spongiform encephalopathy of sheep and goats (scrapie) shares many characteristics with Creutzfeldt-Jakob disease (CJD), a similar dementing illness of humans. To investigate the possibility that CJD is acquired by ingestion of contaminated sheep products, we collected information on production, slaughtering practices, and marketing of sheep in Pennsylvania. The study revealed that sheep were usually marketed before central nervous system signs of scrapie are expected to appear; breeds known to be susceptible to the disease were the most common breeds raised in the area; sheep were imported from other states including those with a high frequency of scrapie; use of veterinary services on the sheep farms investigated and, hence, opportunities to detect the disease were limited; sheep producers in the area knew little about scrapie despite the fact that the disease has been reported in the area, and animal organs including sheep organs were sometimes included in processed food. Therefore, it was concluded that in Pennsylvania there are some 'weak links' through which scrapie-infected animals could contaminate human food, and that consumption of these foods could perhaps account for spongiform encephalopathy in humans. The weak links observed are probably not unique to Pennsylvania.
 
 
 
Thursday, August 20, 2015 Doctor William J. Hadlow
 
William J. Hadlow Dr. Hadlow (Ohio State ’48), 94, Hamilton, Montana, died June 20, 2015.
 
 
Spongiform Encephalopathy in Captive Wild ZOO BSE INQUIRY
 

***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

Transmission of scrapie prions to primate after an extended silent incubation period 

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation

Abstract 

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

SNIP...

Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free.. Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


Singeltary on Scrapie and human transmission way back, see;


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 
https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion.. Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY
https://web.archive.org/web/20170126051158/http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 
http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

THURSDAY, SEPTEMBER 27, 2018 

***> Estimating the impact on food and edible materials of changing scrapie control measures: The scrapie control model


THE tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.


1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 



ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

here is the latest;

PRION 2018 CONFERENCE
 
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 
 
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). 
 
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. 
 
Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 
 
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.
 
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
 

READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
 
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States 
 
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA. 
 
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states.
 
AND ANOTHER STUDY;
 
P172 Peripheral Neuropathy in Patients with Prion Disease 
 
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
 
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, AND included 104 patients.
 
SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), AND THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
 
snip...see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
 
 

Prion 2017 
 
Conference Abstracts CWD 2017 PRION CONFERENCE 
 
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 
 
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
 
PRION 2017 
 
DECIPHERING NEURODEGENERATIVE DISORDERS 
 
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO 
 
PRION 2017 
 
CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS 
 
*** PRION 2017 CONFERENCE VIDEO 
 
 

TUESDAY, JUNE 13, 2017 
 
PRION 2017 CONFERENCE ABSTRACT 
 
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 
 
 
 
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC 
 
 just out CDC...see;

 Research
 
Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions
 
Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)
 
M. A. Barria et al.
 
ABSTRACT
 
Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted. 
 

Molecular Barriers to Zoonotic Transmission of Prions 
 
Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Headcorresponding author 
 
snip... 
 
The conversion of human PrPC by CWD brain homogenate in PMCA reactions was less efficient when the amino acid at position 129 was valine rather than methionine. 
 
***Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype. 
 
snip... 
 
However, we can say with confidence that under the conditions used here, none of the animal isolates tested were as efficient as C-type BSE in converting human PrPC, which is reassuring. 
 
***Less reassuring is the finding that there is no absolute barrier to the conversion of human PrPC by CWD prions in a protocol using a single round of PMCA and an entirely human substrate prepared from the target organ of prion diseases, the brain. 
 
 
ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION 

10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question... 

''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)

EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors 

First published: 17 January 2018 
https://doi.org/10.2903/j.efsa.2018.5132 ;

also, see; 

8. Even though human TSE
exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 

snip... 

The tissue distribution of infectivity in CWD
infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. 
https://efsa.onlinelibrary..wiley.com/doi/full/10.2903/j.efsa.2018.5132

zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm 

***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116*** 
https://www.tandfonline.com/doi/pdf/10.4161/pri.29237
 
To date there is no direct evidence that CWD has been or can be transmitted from animals to humans. 

However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure. 

Both infected brain and muscle tissues were found to transmit disease. 

Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods. 

Summary and Recommendation: 

snip...

Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle. 

These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle. 
https://www.thetyee.ca/Documents/2017/06/24/Risk-Advisory-Opinion-CWD-2017.pdf


*** WDA 2016 NEW YORK *** 

We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. 

In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 

Student Presentations Session 2 

The species barriers and public health threat of CWD and BSE prions 

Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University 

Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. 

These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. 

The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. 

We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. 

We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
http://www.wda2016.org/uploads/5/8/6/1/58613359/wda_2016_conference_proceedings_low_res.pdf
 
CDC CWD 2018 TRANSMISSION

TUESDAY, SEPTEMBER 12, 2017 

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 
http://chronic-wasting-disease.blogspot.com/2017/09/cdc-now-recommends-strongly-consider.html

SATURDAY, JANUARY 27, 2018 

CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
http://chronic-wasting-disease.blogspot.com/2018/01/cdc-chronic-wasting-disease-cwd-tse.html

Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018

CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE. 

THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$

BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.

SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.

SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.

SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
https://www.nature.com/articles/srep11573 

CDC CWD TSE PRION UPDATE USA JANUARY 2018

As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids... 

Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018 

snip.... 
https://www.cdc.gov/prions/cwd/occurrence.html

*** 2017-2018 CWD TSE Prion UPDATE
https://www.cdc.gov/prions/cwd/occurrence.html


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 
http://cdmrp.army.mil/prevfunded/nprp/NPRP_Summit_Final_Report.pdf

Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip...
https://web.archive.org/web/20090506002237/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
http://www.fsis.usda.gov/OPPDE/Comments/03-025IFA/03-025IFA-2.pdf

Prion Infectivity in Fat of Deer with Chronic Wasting Disease
 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
http://jvi.asm.org/content/83/18/9608.full

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
http://science.sciencemag.org/content/311/5764/1117.long

*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM

To: 
rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html

> However, to date, no CWD infections have been reported in people. 

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 
http://www.tandfonline.com/doi/full/10.4161/pri.28124?src=recsys
http://www.tandfonline.com/doi/pdf/10.4161/pri.28124?needAccess=true
https://wwwnc.cdc.gov/eid/article/20/1/13-0858_article

SEE; 

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Monday, May 23, 2011

CDC Assesses Potential Human Exposure to Prion Diseases Travel Warning

Public release date: 23-May-2011

Contact: Francesca Costanzo 
adajmedia@elsevier.com 215-239-3249 Elsevier Health Sciences

CDC assesses potential human exposure to prion diseases Study results reported in the Journal of the American Dietetic Association Philadelphia, PA, May 23, 2011 – Researchers from the Centers for Disease Control and Prevention (CDC) have examined the potential for human exposure to prion diseases, looking at hunting, venison consumption, and travel to areas in which prion diseases have been reported in animals. Three prion diseases in particular – bovine spongiform encephalopathy (BSE or “Mad Cow Disease”), variant Creutzfeldt-Jakob disease (vCJD), and chronic wasting disease (CWD) – were specified in the investigation. The results of this investigation are published in the June issue of the Journal of the American Dietetic Association.

“While prion diseases are rare, they are generally fatal for anyone who becomes infected. More than anything else, the results of this study support the need for continued surveillance of prion diseases,” commented lead investigator Joseph Y. Abrams, MPH, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta.”But it’s also important that people know the facts about these diseases, especially since this study shows that a good number of people have participated in activities that may expose them to infection-causing agents.”

Although rare, human prion diseases such as CJD may be related to BSE. Prion (proteinaceous infectious particles) diseases are a group of rare brain diseases that affect humans and animals. When a person gets a prion disease, brain function is impaired. This causes memory and personality changes, dementia, and problems with movement. All of these worsen over time. These diseases are invariably fatal. Since these diseases may take years to manifest, knowing the extent of human exposure to possible prion diseases could become important in the event of an outbreak.

CDC investigators evaluated the results of the 2006-2007 population survey conducted by the Foodborne Diseases Active Surveillance Network (FoodNet). This survey collects information on food consumption practices, health outcomes, and demographic characteristics of residents of the participating Emerging Infections Program sites. The survey was conducted in Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, as well as five counties in the San Francisco Bay area, seven counties in the Greater Denver area, and 34 counties in western and northeastern New York.

Survey participants were asked about behaviors that could be associated with exposure to the agents causing BSE and CWD, including travel to the nine countries considered to be BSE-endemic (United Kingdom, Republic of Ireland, France, Portugal, Switzerland, Italy, the Netherlands, Germany, Spain) and the cumulative length of stay in each of those countries. Respondents were asked if they ever had hunted for deer or elk, and if that hunting had taken place in areas considered to be CWD-endemic (northeastern Colorado, southeastern Wyoming or southwestern Nebraska). They were also asked if they had ever consumed venison, the frequency of consumption, and whether the meat came from the wild.

The proportion of survey respondents who reported travel to at least one of the nine BSE endemic countries since 1980 was 29.5%. Travel to the United Kingdom was reported by 19.4% of respondents, higher than to any other BSE-endemic country. Among those who traveled, the median duration of travel to the United Kingdom (14 days) was longer than that of any other BSE-endemic country. Travelers to the UK were more likely to have spent at least 30 days in the country (24.9%) compared to travelers to any other BSE endemic country. The prevalence and extent of travel to the UK indicate that health concerns in the UK may also become issues for US residents.

The proportion of survey respondents reporting having hunted for deer or elk was 18.5% and 1.2% reported having hunted for deer or elk in CWD-endemic areas. Venison consumption was reported by 67.4% of FoodNet respondents, and 88.6% of those reporting venison consumption had obtained all of their meat from the wild. These findings reinforce the importance of CWD surveillance and control programs for wild deer and elk to reduce human exposure to the CWD agent. Hunters in CWD-endemic areas are advised to take simple precautions such as: avoiding consuming meat from sickly deer or elk, avoiding consuming brain or spinal cord tissues, minimizing the handling of brain and spinal cord tissues, and wearing gloves when field-dressing carcasses.

According to Abrams, “The 2006-2007 FoodNet population survey provides useful information should foodborne prion infection become an increasing public health concern in the future. The data presented describe the prevalence of important behaviors and their associations with demographic characteristics. Surveillance of BSE, CWD, and human prion diseases are critical aspects of addressing the burden of these diseases in animal populations and how that may relate to human health.”

###

The article is “Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet population survey” by Joseph Y. Abrams, MPH; Ryan A. Maddox, MPH; Alexis R Harvey, MPH; Lawrence B. Schonberger, MD; and Ermias D. Belay, MD. It appears in the Journal of the American Dietetic Association, Volume 111, Issue 6 (June 2011) published by Elsevier.

In an accompanying podcast CDC’s Joseph Y. Abrams discusses travel, hunting, and eating venison in relation to prion diseases. It is available at 
http://adajournal.org/content/podcast.
http://www.eurekalert.org/pub_releases/2011-05/ehs-cap051811.php

Thursday, May 26, 2011

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Joseph Y. Abrams, MPH, Ryan A. Maddox, MPH , Alexis R. Harvey, MPH , Lawrence B. Schonberger, MD , Ermias D. Belay, MD

Accepted 15 November 2010. Abstract Full Text PDF References .

Abstract

The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD–endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission.
http://www.adajournal.org/article/S0002-8223(11)00278-1/abstract

PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ; 

Thursday, May 26, 2011

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
http://transmissiblespongiformencephalopathy.blogspot.com/2011/05/travel-history-hunting-and-venison.html

NOR IS THE FDA recalling this CWD positive elk meat for the well being of the dead elk ;

Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II
http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html

Transmissible Spongiform Encephalopathies

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;

ALSO, I FIND THIS VERY DISTURBING...SEE;


***> Prion 2018 P74 High Prevalence of CWD prions in male reproductive samples 

Carlos Kramm (1,2), Ruben Gomez-Gutierrez (1,3), Tracy Nichols (4), Claudio Soto (1) and Rodrigo Morales (1) 



READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT Protein Misfolding Cyclic Amplification PMCA results showed positive CWD prion detection in testes, epididymis and seminal fluid samples. seems also the scientists are worried about any potential mechanisms of CWD spreading and they want to decrease putative interindividual transmission associated to insemination using CWD contaminated specimens, if that might occur under natural conditions. i have been concerned about this for some time with BSE super-ovulation and since;

 PrPSc detection and infectivity in semen from scrapie-infected sheep




PITUITARY EXTRACT

This was used to help cows super ovulate. This tissue was considered to be of greatest risk of containing BSE and consequently transmitting the disease...







MANAGEMENT IN CONFIDENCE

CERTIFIED BSE-FREE HERDS FOR SOURCE OF MATERIAL FOR BIOLOGICAL PRODUCTS


Tuesday, February 8, 2011

U.S.A. 50 STATE BSE MAD COW CONFERENCE CALL Jan. 9, 2001


HAVE YOU BEEN THUNDERSTRUCK? 

SUNDAY, AUGUST 02, 2015 

TEXAS CWD, Have you been ThunderStruck, deer semen, straw bred bucks, super ovulation, and the potential TSE Prion connection, what if?

Court papers state that in February 2007, Favero acquired 184 straws of whitetail deer semen valued at about $92,000 from a buck named “Diablo'” that he knew had been illegally taken out of Texas, and again in January 2008 took another 110 straws of semen from a buck named “Thunderstruck.” (Read more in the court paper posted at the bottom of this entry.)


SATURDAY, SEPTEMBER 29, 2018 

This Map Spells Trouble for the Future of Deer Hunting CWD TSE Prion Consumption, Exposure, and Zoonosis Potential


FRIDAY, MARCH 30, 2018 

Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification Program Standards Singeltary Submission March 30, 2018

Terry S. Singeltary Sr., Bacliff, Texas USA 77518 flounder9@verizon....net 

Attachments (1) Docket No. APHIS-2018-0011 Chronic Wasting Disease Herd Certification Program Standards Singeltary View Attachment:View as format pdf 



https://www.regulations.gov/docketBrowser?rpp=25&so=DESC&sb=commentDueDate&po=0&dct=PS&D=APHIS-2018-0011


Friday, December 14, 2012

DEFRA U.K. What is the risk of Chronic Wasting Disease CWD being introduced into Great Britain? A Qualitative Risk Assessment October 2012

snip.....

In the USA, under the Food and Drug Administration's BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system. However, this recommendation is guidance and not a requirement by law.

Animals considered at high risk for CWD include:

1) animals from areas declared to be endemic for CWD and/or to be CWD eradication zones and

2) deer and elk that at some time during the 60-month period prior to slaughter were in a captive herd that contained a CWD-positive animal.

Therefore, in the USA, materials from cervids other than CWD positive animals may be used in animal feed and feed ingredients for non-ruminants.

The amount of animal PAP that is of deer and/or elk origin imported from the USA to GB can not be determined, however, as it is not specified in TRACES. It may constitute a small percentage of the 8412 kilos of non-fish origin processed animal proteins that were imported from US into GB in 2011.

Overall, therefore, it is considered there is a __greater than negligible risk___ that (nonruminant) animal feed and pet food containing deer and/or elk protein is imported into GB.

There is uncertainty associated with this estimate given the lack of data on the amount of deer and/or elk protein possibly being imported in these products.

snip.....

36% in 2007 (Almberg et al., 2011). In such areas, population declines of deer of up to 30 to 50% have been observed (Almberg et al., 2011). In areas of Colorado, the prevalence can be as high as 30% (EFSA, 2011).

The clinical signs of CWD in affected adults are weight loss and behavioural changes that can span weeks or months (Williams, 2005). In addition, signs might include excessive salivation, behavioural alterations including a fixed stare and changes in interaction with other animals in the herd, and an altered stance (Williams, 2005). These signs are indistinguishable from cervids experimentally infected with bovine spongiform encephalopathy (BSE).

Given this, if CWD was to be introduced into countries with BSE such as GB, for example, infected deer populations would need to be tested to differentiate if they were infected with CWD or BSE to minimise the risk of BSE entering the human food-chain via affected venison.

snip.....

The rate of transmission of CWD has been reported to be as high as 30% and can approach 100% among captive animals in endemic areas (Safar et al., 2008).

snip.....

In summary, in endemic areas, there is a medium probability that the soil and surrounding environment is contaminated with CWD prions and in a bioavailable form. In rural areas where CWD has not been reported and deer are present, there is a greater than negligible risk the soil is contaminated with CWD prion.

snip.....

In summary, given the volume of tourists, hunters and servicemen moving between GB and North America, the probability of at least one person travelling to/from a CWD affected area and, in doing so, contaminating their clothing, footwear and/or equipment prior to arriving in GB is greater than negligible... For deer hunters, specifically, the risk is likely to be greater given the increased contact with deer and their environment. However, there is significant uncertainty associated with these estimates.

snip.....

Therefore, it is considered that farmed and park deer may have a higher probability of exposure to CWD transferred to the environment than wild deer given the restricted habitat range and higher frequency of contact with tourists and returning GB residents.

snip.....


TUESDAY, APRIL 18, 2017 

*** EXTREME USA FDA PART 589 TSE PRION FEED LOOP HOLE STILL EXIST, AND PRICE OF POKER GOES UP ***


TUESDAY, JANUARY 17, 2017 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION


THIS April, 4, 2017 

violation of the mad cow 21 CFR 589.2000 OAI is very serious for the great state of Michigan, some 20 years post FDA mad cow feed of August 1997. if would most likely take a FOIA request and a decade of wrangling to find out more. 

TUESDAY, JANUARY 17, 2017

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEEDVIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE 2016 to 2017 BSE TSE PRION 

I would kindly like to comment on this FDA BSE/Ruminant Feed Inspections Firms Inventory (excel format)4 format, for reporting these breaches of BSE TSE prion protocols, from the extensive mad cow feed ban warning letters the fda use to put out for each violations. simply put, this excel format sucks, and the FDA et al intentionally made it this difficult to follow the usda fda mad cow follies. this is an intentional format to make it as difficult as possible to follow these breaches of the mad cow TSE prion safety feed protocols. to have absolutely no chronological or numerical order, and to format such violations in a way that they are almost impossible to find, says a lot about just how far the FDA and our fine federal friends will go through to hide these continued violations of the BSE TSE prion mad cow feed ban, and any breaches of protocols there from. once again, the wolf guarding the henhouse $$$

NAI = NO ACTION INDICATED

OAI = OFFICIAL ACTION INDICATED

VAI = VOLUNTARY ACTION INDICATED

RTS = REFERRED TO STATE

OAI (Official Action Indicated) when inspectors find significant objectionable conditions or practices and believe that regulatory sanctions are warranted to address the establishment’s lack of compliance with the regulation. An example of an OAI classification would be findings of manufacturing procedures insufficient to ensure that ruminant feed is not contaminated with prohibited material. Inspectors will promptly re-inspect facilities classified OAI after regulatory sanctions have been applied to determine whether the corrective actions are adequate to address the objectionable conditions. 

2016


Michigan adds another CWD TSE Prion case, total at 62 to date

Total Deer Tested and Total Positives Cases 62




WEDNESDAY, SEPTEMBER 26, 2018 

***> Michigan adds another CWD TSE Prion case, total at 62 to date



WEDNESDAY, MARCH 07, 2018 

***> Michigan DNR CWD National Perspective: Captive Herd Certification Program - Dr. Tracy Nichols

***> CURRENT STATUS OF CWD IN CAPTIVE CERVID HERDS IN 16 STATES AS OF MAY 2017

43 ELK HERDS

37 WTD HERDS

1 RED DEER HERD

6 MIX SPECIES HERDS

85 CWD-POSITIVE CAPTIVE HERDS 

snip...see


LISTEN TO THIS NICE LITTLE CWD BLUES DIDDY BY TAMI ABOUT WISCONSIN CWD TSE PRION. WOW, ANNUAL UPDATES NOW, FROM HERE ON OUT, ABOUT CWD...200,000 CWD TESTS, WITH OVER 3500 CWD POSITIVE CASES, SEEING INCREASING TRENDS IN PREVALENCE AND DISTRIBUTION...CARCASS DISPOSAL SIGNIFICANT CHALLENGE...CWD SAMPLING EFFORTS GONE DONE, WHILE CWD POSITIVES HAVE GONE UP...ALSO, 40 SELF SERVING KIOSKS ACROSS STATE AND FREE HUNTER SERVICE CWD TESTING AND SICK DEER POLICY REPORTING AND TESTING ACROSS STATE!


MONDAY, JUNE 25, 2018 

Wisconsin DATCP Confirms CWD-Positive Elk in Sauk County Breeding Farm



MONDAY, JUNE 18, 2018 

Wisconsin DATCP Confirms CWD-Positive Deer in Marinette County farm has been quarantined



WEDNESDAY, JUNE 13, 2018 

Wisconsin DATCP NVSL confirmed 21 WTD from a deer farm Iowa County tested positive for chronic wasting disease (CWD)



SATURDAY, MARCH 03, 2018 

WISCONSIN CHRONIC WASTING DISEASE TSE Prion DNR Study Finds CWD-Infected Deer Die At 3 Times Rate Of Healthy Animals


FRIDAY, FEBRUARY 16, 2018 

Wisconsin Deer from Now-Quarantined PA Lancaster County Farm Tests Positive for Chronic Wasting Disease CWD TSE Prion


FRIDAY, JANUARY 26, 2018 

WISCONSIN REPORTS 588 CWD TSE PRION POSITIVE CASES FOR 2017 WITH 4170 CASES CONFIRMED TO DATE


USA MAD DEER ROUNDUP

Feb. 16, 2018

Durkin: Stop private deer industry from trucking CWD across state 

Patrick Durkin, For USA TODAY NETWORK-Wisconsin Published 10:13 a.m. CT Feb. 16, 2018 

A Waupaca County captive-deer shooting preserve that discovered its first two cases of chronic wasting disease in October found 10 more CWD cases last fall, with 11 of the deer coming from a breeding facility in Iowa County — Wisconsin’s most infected county.

Hunt’s End Deer Ranch near Ogdensburg is one of 376 fenced deer farms in Wisconsin, according to the Department of Agriculture, Trade and Consumer Protection. Hunt’s End bought the diseased deer from Windy Ridge Whitetails, a 15-acre, 110-deer breeding facility south of Mineral Point in Iowa County. Of Wisconsin’s 4,175 CWD cases in wild deer, 2,261 (54 percent) are in Iowa County.

Since CWD’s discovery in three wild deer shot during the November 2001 gun season, CWD has been detected on 18 Wisconsin deer farms, of which 11 were “depopulated.” DATCP has identified 242 CWD cases in captive facilities the past 16 years.

The state’s worst site remains the former Buckhorn Flats Game Farm near Almond in Portage County, where 80 deer tested positive for this always-fatal disease from 2002 to 2006. When the U.S. Department of Agriculture shot out the 70-acre pen in January 2006, 60 of the remaining 76 deer carried CWD, a nearly 80 percent infection rate. 

The Department of Natural Resources bought the heavily contaminated site for $465,000 in 2011 and has kept it fenced and deer-free since.

The last time DATCP exterminated a captive herd was November 2015, when it killed 228 deer at Fairchild Whitetails, a 10-acre breeding facility in Eau Claire County, and paid its owner, Richard Vojtik, $298,770 in compensation. Tests revealed 34 of those deer carried CWD (15 percent), but two bucks had escaped earlier. Those bucks roamed five months before being shot and tested. They, too, had CWD.

Both operations were outside the endemic CWD region in southern Wisconsin; Buckhorn Flats by about 60 miles and Fairchild Whitetails by about 120. Wisconsin’s four most active CWD outbreaks on deer farms are north of U.S. 10, and farther away from the endemic region — basically the DNR’s Southern Farmlands district — which had 584 CWD cases 2017-18 and 4,148 since 2001.

Those businesses are:

• Wilderness Whitetails, near Eland in Marathon County: 68 CWD cases, including 43 in 2017-18. DATCP first reported CWD there in December 2013 in a 5-year-old buck shot by a facility client. The operation also found three cases in 2014, nine in 2015 and 12 in 2016. 

The preserve held about 310 deer in its 351-acre pen last summer. Since beginning tests in 2002, the facility tested 373 deer before finding its first case 11 years later.

• Hunt’s End, Waupaca County: 12 cases, all in 2017-18. The owners, Dusty and Mandy Reid, didn’t detect CWD on the 84-acre shooting facility until two 4-year-old bucks tested positive last fall. DATCP announced those cases Oct. 20, and disclosed 10 additional cases in response to my open-records request in January.

Both Oct. 20 bucks originated from Windy Ridge Whitetails. Nine other bucks from Windy Ridge, owned by Steven and Marsh Bertram, tested positive for CWD after being shot by Hunt’s End clients.

Now DATCP records covering the past five years showed Hunt’s End acquired 31 deer from Windy Ridge, which also sent a combined 67 whitetails to nine other Wisconsin deer farms during that period.

Paul McGraw, DATCP’s state veterinarian and administrator in animal health, quarantined three Hunt’s End properties Oct. 20, but let its owners, continue selling hunts because “properly handled dead animals leaving the premises do not pose a disease risk.”

McGraw also quarantined Windy Ridge, but the specifications let the business move more deer to the Waupaca shooting facility. It made two more shipments to Hunt’s End, the last occurring Nov. 13.

• Apple Creek Whitetails, Oconto County: 11 cases. Since discovering CWD in September 2016 in an 18-month-old doe killed inside the facility near Gillett, DATCP has identified 10 more cases, including three in 2017-18. The preserve held about 1,850 deer on 1,363 acres, and tested 466 in 2016. After first testing for CWD in 2009, the business processed 1,192 deer before finding its first case 18 months ago.

• Three Lakes Trophy Ranch, Oneida County: Nine cases. Since discovering CWD in December 2015 in a 3-year-old buck at Three Lakes, DATCP has identified eight more cases, including two in 2017-18. The preserve held about 545 whitetails on 570 acres.

Although the Hunt’s End outbreak traces to Iowa County deer, Windy Ridge Whitetails sent even more deer, 42, to Vojtik’s American Adventures Ranch near Fairchild with no documented problems. DATCP reports no CWD cases there, and Vojtik, who also owned the 10-acre Fairchild Whitetails breeding facility, said he hasn’t bought Windy Ridge deer the past two years.

Vojtik said Wednesday that he and his clients shoot out his enclosure’s herd of about 200 deer each year to reduce CWD risks. And because he’s not in DATCP’s herd-status program, he must only test 50 percent of deer dying there.

Meanwhile, Wilderness Whitetails tests all of its dead deer. It leads the state with 68 CWD cases, even though it has maintained a “closed herd” since opening its Eland facility in 2004, said its owner, Greg Flees, when reached Wednesday. Flees said all deer in the 351-acre facility were born there or came from his family’s Portage County breeding pen, which began in the 1970s and has never had CWD.

Flees said the jump from 12 CWD cases in 2016 to 43 in 2017 is no mystery or surprise. “We shot more deer to lower our densities, so we found more CWD,” he said. He thinks CWD was in the facility’s soils when they enclosed it with an 8-foot-high fence 14 years ago, or it arrived in alfalfa bales brought in for feed.

Perhaps the bigger mystery is why DATCP allows any deer from Iowa County to be shipped anywhere. Windy Ridge Whitetails is one of eight captive-deer facilities in CWD-infected counties — Sauk, Dane, Iowa, Rock, Walworth and Richland — enrolled in DATCP’s herd-status program, which allows deer transfers if facilities follow specified guidelines.

That won’t change soon, either. In a letter Jan. 30 responding to my open records request, Paul Dedinsky, DATCP’s chief legal counsel, wrote, “The Department is not proposing any rule changes to prohibit movement from CWD endemic areas.”

No doubt Wisconsin’s wild deer provide a vast, mostly undocumented pool for spreading CWD, but sick deer can only carry disease as far as they walk. With DATCP’s approval, privately owned deer could spread CWD wherever they’re trucked.

Patrick Durkin is a freelance writer who covers outdoors for USA TODAY NETWORK-Wisconsin... Email him at patrickdurkin56@gmail.com.


FRIDAY, FEBRUARY 16, 2018 

Wisconsin Stop private deer industry from trucking CWD across state


Tuesday, December 20, 2011

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) Farm Update DECEMBER 2011

The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80 acres of land for $465,000 for the Statewide Wildlife Habitat Program in Portage County and approve the restrictions on public use of the site.

SUMMARY:



***>captive deer farmers breeders entitlement program, i.e. indemnity program, why?

how many states have $465,000., and can quarantine and purchase there from, each cwd said infected farm, but how many states can afford this for all the cwd infected cervid game ranch type farms, and why do tax payers have to pay for it ???

MONDAY, MARCH 26, 2018 

Wisconsin Rep. Milroy Wants More Action to Combat CWD TSE Prion aka Mad Deer Disease


2016
 

ONE more thing, please remember, the label does not have to say ''deer ration'' for cervid to be pumped up with. you can get the same ''high protein'' from many sources of high protein feed for animals other than cattle, and feed them to cervid...

Saturday, August 29, 2009

FOIA REQUEST FEED RECALL 2009 Product may have contained prohibited materials Bulk Whole Barley, Recall # V-256-2009



Friday, September 4, 2009

FOIA REQUEST ON FEED RECALL PRODUCT 429,128 lbs. feed for ruminant animals may have been contaminated with prohibited material Recall # V-258-2009


WEDNESDAY, JULY 11, 2018 

CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS FDA EMERGENCY REQUEST FOR RULE CHANGE USA Section 21 C.F.R. 589.2000


TUESDAY, JULY 10, 2018
 
CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS
 
*** ''but feeding of other ruminant protein, including scrapie-infected sheep, can continue to pigs.''
 
CONFIDENTIAL SPONGIFORM ENCEPHALOPATHY OF PIGS
 
SUNDAY, SEPTEMBER 23, 2018 

Low-volume goat milk transmission of classical scrapie to lambs and goat kids



TUESDAY, SEPTEMBER 4, 2018 

USA CJD, BSE, SCRAPIE, CWD, TSE PRION END OF YEAR REPORTS September 4, 2018


WEDNESDAY, SEPTEMBER 19, 2018 

CHRONIC WASTING DISEASE CWD TSE PRION Detection of a first case in Quebec Canada


TUESDAY, JULY 03, 2018 
 
Chronic Wasting Disease CWD TSE Prion Global Report Update, USA, CANADA, KOREA, NORWAY, FINLAND, Game Farms and Fake news
 

SUNDAY, APRIL 8, 2018 

Transmissible Spongiform Encephalopathy TSE Prion Disease Global Pandemic Urgent Update April 9, 2018


***> NEW TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE (MAD CAMEL DISEASE) IN A NEW SPECIES <***

NEW OUTBREAK OF TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION DISEASE IN A NEW SPECIES

Subject: Prion Disease in Dromedary Camels, Algeria

Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.



Wednesday, May 30, 2018 

Dromedary camels in northern Africa have a neurodegenerative prion disease that may have originated decades ago


***> IMPORTS AND EXPORTS <***

SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN



WEDNESDAY, JULY 11, 2018 

CONFIDENTIAL IN CONFIDENCE SPONGIFORM ENCEPHALOPATHY OF PIGS FDA EMERGENCY REQUEST FOR RULE CHANGE USA Section 21 C.F.R. 589.2000


SUNDAY, APRIL 18, 2010 

SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010



Terry S. Singeltary Sr. 


MONDAY, OCTOBER 01, 2018 

Update on Classical and Atypical Scrapie in Sheep and Goats: Review 2018

No comments: